Accretion product formation from self- and crossreactions of RO_2 radicals $RO_2 + R'O_2 -> ROOR' + O_2$

Torsten Berndt

Davis, 7.12.2018

Motivation

Source: A. Tilgner

RO₂ radical reactions I (traditional)

RO ₂ + NO	-> RO + NO ₂ -> RONO ₂	site , - urban - rural - forest	/ NO conc. / 10 ppb 1 ppb 20 ppt	RO ₂ lifetime 0.5 s 5 s 4 min
$RO_2 + HO_2$	-> ROOH + O ₂	site / - urban - rural - forest	′ HO ₂ conc. / 5 ppt 20 ppt 50 ppt	RO ₂ lifetime 9 min 2 min 1 min
$RO_2 + RO_2$	-> 2 RO + O ₂ -> ROH +R′(C=O) + O ₂	RO ₂ conc. / I a few ppt	RO ₂ lifetime min - hours

RO₂ radical measurements in the atmosphere

Whalley et al., Atmos. Chem. Phys. (2018)

Tan et al., Atmos. Chem. Phys. (2018)

RO₂ radical reactions II

RO ₂ + NO	-> RO + NO2	<u>RO₂ lifetime</u>
	$-> RONO_2$	0.5 s - 4 min
$RO_2 + HO_2$	-> ROOH + O ₂	1 - 9 min
$RO_2 + RO_2$	-> 2 RO + O ₂ -> ROH +R′(C=O) + O ₂	min - hours
RO ₂ isomeriza	< 1 s possible	

 $RO_2 + RO_2 -> ROOR + O_2$ min - hours

 - 1960s/70s/80s: ROOR formation is unimportant! RO₂: CH₃O₂, C₂H₅O₂ McDowell et al., *Can.J.Chem.*(1963); Weaver et al., *J.Photochem.*(1975)
 - In the last years: rebirth of interest -> HOM formation from terpene ozonolysis

-> large molecules as 1st generation products during VOC degradation

Experiment

Free jet flow system

- 1 bar purified air
- Residence time: 3.0 7.9 s
- "early stage" of a reaction
- RO₂ radical formation/isomerization
- Controlled bimolecular RO₂ steps
- <u>benefit:</u> "wall-free" conditions

CI-APi-TOF mass spectrometry

- Boulder-Typ inlet system
- Detection limit:
 10³ 10⁴ molecules cm⁻³
- Different ionisation schemes:
 CH₃COO⁻, I⁻, RNH₃⁺, H₂NNH₃⁺
- Lower limit concentrations

Additionally NH₄⁺-Cl3-TOF

Accretion product formation via RO₂ + RO₂ -> ROOR + O₂ I

OH + mesitylene (1,3,5-trimethylbenzene), OH generation via TME ozonolysis

Berndt et al., *Angew.Chem.*(2018)

Accretion product formation via $RO_2 + RO_2 \rightarrow ROOR + O_2$ II

OH + mesitylene (1,3,5-trimethylbenzene), OH generation via HO_2 + NO -> OH + NO₂ isopropyl nitrite photolysis

Accretion product formation via $RO_2 + RO_2 \rightarrow ROOR + O_2$ III

OH + 1-butene / isoprene / n-hexane / methane OH + 1-butene (OH via $O_3 + TME$) 1-butene, TME: constant CH₃C(O)CH₂O₂ concentration (molecules cm⁻³) 10⁹ $O_3 + TME (+O_2) -> OH + CH_3C(O)CH_2O_2 + ...$ $C_{7}H_{14}O_{4}$ Δ $C_{8}H_{18}O_{4}$ $C_{6}H_{10}O_{4}$ ∇ OH + 1-butene (+ O_2) -> $HO-C_4H_8O_2$ ☆ 10⁸ HO-C H₀ $HO-C_{4}H_{8}O_{2} + CH_{3}C(O)CH_{2}O_{2} -> C_{7}H_{14}O_{4} + O_{2}$ 10⁷ $2 HO - C_4 H_8 O_2 -> C_8 H_{18} O_4 + O_2$ NH⁺-CI3-TOF $2 CH_3C(0)CH_2O_2 \rightarrow C_6H_{10}O_4 + O_2$ C₃H₇NH₃⁺-APi-TOF 10⁶ -10⁵ 10¹² **10**¹³ **10**¹⁰ **10**¹¹ $[O_{3}]$ (molecules cm⁻³)

-> ROOR formation seems to be generally valid!

Accretion product formation via $RO_2 + RO_2 \rightarrow ROOR + O_2$ - Kinetics

- -> increasing RO₂ functionalization leads to increasing RO₂ reactivity
- -> Hypothesis: attractive forces (donor-acceptor-relationships) form a longer-living reactive complex ROOOOR

RO_2 radical formation from $O_3/OH + \alpha$ -pinene

reacted α -pinene: (2.9 - 43) 10⁷ molecules cm⁻³

- -> ozonolysis derived RO₂ radicals O,O-C₁₀H₁₅(O₂)_xO₂ x = 0 - 3
- -> OH reaction derived RO₂ radicals HO-C₁₀H₁₆(O₂)_{α}O₂ $\alpha = 0 - 2$

Berndt et al., ES&T (2018)

10¹²

C_{19}/C_{20} accretion product formation from $O_3/OH + \alpha$ -pinene I

cluster formation via C₃H₇NH₃⁺-APi-TOF

 $\begin{array}{ll} -> \ \mathsf{RO}_2 + \mathsf{R'O}_2 -> \mathsf{C}_{20}\text{-}\mathsf{ROOR'} + \mathsf{O}_2 \\ \\ \mathbf{C}_{20}\mathsf{H}_{30}\mathsf{O}_{6,8,10,12,14,16,18} & \mathsf{via}\ \mathsf{O}_3\text{-}\mathsf{RO}_2 + \mathsf{O}_3\text{-}\mathsf{RO}_2 \\ \\ \mathbf{C}_{20}\mathsf{H}_{34}\mathsf{O}_{4,6,8,10,12} & \mathsf{via}\ \mathsf{OH}\text{-}\mathsf{RO}_2 + \mathsf{OH}\text{-}\mathsf{RO}_2 \\ \\ \mathbf{C}_{20}\mathsf{H}_{32}\mathsf{O}_{5,7,9,11,13,15} & \mathsf{via}\ \mathsf{O}_3\text{-}\mathsf{RO}_2 + \mathsf{OH}\text{-}\mathsf{RO}_2 \end{array}$

 $\begin{array}{ll} -> & {\rm RO}_2 + {\rm R'O}_2 -> {\rm C}_{19} {\rm -ROOR'} + {\rm O}_2 \left(+ {\rm CH}_2 {\rm O} ? \right) \\ {\color{black} {\pmb C_{19}} {\pmb H_{28}} {\pmb O_{5,7,9,11,13}}} & {\rm via} \; {\rm O}_3 {\rm -RO}_2 + {\rm O}_3 {\rm -RO}_2 \\ {\color{black} {\pmb C_{19}} {\pmb H_{30}} {\pmb O_{6,8,10,12,14}}} & {\rm via} \; {\rm O}_3 {\rm -RO}_2 + {\rm OH-RO}_2 \end{array}$

Accretion product formation from O₃/OH + a-pinene II

-> Complex accretion product spectrum in atmosphere!

New RO₂ pathways

- RO₂ isomerization
 - -> higher oxidized RO₂ radicals
- Accretion product formation: RO₂ + RO₂ -> ROOR + O₂

-> formation of large molecules as 1st generation products

during VOC degradation

- -> ROOR formation seems to be generally valid
- -> Complex accretion product spectrum in atmosphere

Thanks!

K. Pielok

A. Rohmer

A. Hansel's group, University of Innsbruck

Thank you for your attention!

