

EFFECT OF NOx IN THE PHOTOCHEMICAL SYSTEM OF A-PINENE 12.06.2018 I SUNGAH KANG, THOMAS MENTEL, JÜRGEN WILDT, IIDA PULLINEN

MONIKA SPRINGER, SEBASTIAN SCHMITT

1. MOTIVATION

Peroxy Radical and Highly Oxidized Molecule(HOM)

Member of the Helmholtz Association

Forschungszentrum

2. EXPERIMENTS: JÜLICH PLANT ATMOSPHERE CHAMBER

Reflector

Experimental procedure

- continously stirred tank reactor (1450l), residence time : ≈ 50-60 min.
- bring system into steady state
- UV on: photolyze O₃ and produce OH, range 0.1 8.10⁷ cm⁻³
- black lights on: photolyze NO₂ -> NO (0.3-100 ppb)

Mem

3.1 RESULT: MONOMER HOM PATTERN CHANGE

Page 4

3.1 RESULT: MONOMER HOM PATTERN CHANGE

No dependency on **termination functional group** : Similar functionality (multiple hydroperoxyl groups)

Pullinen et al in preparation

3.2 RESULT: FRAGMENTATION

Fragmentation of Monomer and Dimer formation

Alkoxy radical: ROO $^{\circ}$ + NO \rightarrow RO $^{\circ}$ + NO₂

Increase of smaller compounds in monomer and dimer range \rightarrow More volatile compounds

Member of the Helmholtz Association

06 December 2018 P

Page 6

3.3 RESULT: DIMER SUPPRESSION

Dimer intensity decreased (16times)

- 1. $RO_2 + NO/NO_2$ \rightarrow Organic Nitrate
- 2. Smaller dimer(C<20) C₁₅₋₁₉/C₂₀ (2→9.5)

3.3 RESULT: DIMER SUPPRESSION

Effect on SOA?

Dimer \rightarrow involving one relative volatile compound = lose mass of dimer (Dimer formation involves less functionalized peroxy radical, SVOC)

3.4 RESULT: ALKOXY-PEROXY PATHWAY

Correction for NPF, factors 1 -1.17, correction for turnover, factors of 0.8 - 1.2 Reference for normalization: $(9.1 \cdot 10^7 \pm 5.8 \cdot 10^6 \text{ cm}^{-3} \text{ s}^{-1} \text{ at } \sim 0.3 \text{ ppb NO}_X)$

- a) If HOM-alkoxy radical decompose to small fragments
 - \rightarrow Σ HOM number concentration decrease
- b) If HOM-alkoxy rearrange, keeping the C-number (observable with NO₃⁻ CIMS)
 - → Σ HOM number concentration ~constant

3.4 RESULT: ALKOXY-PEROXY PATHWAY

Alkoxy-peroxy pathway keeps RO2 up

3.4 RESULT: ALKOXY-PEROXY PATHWAY

Mass Defect plot

Kendrick-mass=IUPAC-mass x $\frac{16.00000}{15.99492}$

C: 12.00000 Da H: 1.00783 Da O: 15.99492 Da N: 14.00307 Da

- 1. No NOx has only dimer in this middle mass range
- Monomer only appear when there is NOx
 → oxidation degree increased

4.SUMMARY

Effect of NOx in photochemical system of α -pinene

- a. Monomer HOM pattern change
 Ketone, Hydroperoxide, Alcohol → Organic Nitrate
 → Not much effect on SOA mass (γ_{eff})
- b. Fragmentation increased
 Major C10 compounds → Increase of C₅ to C₉ compound
 → SOA mass suppression (Less condensable compound)
- c. Dimer suppression of HOM-SVOC dimers
 Lose chance for SVOC to condense on SOA (Dimer-O₂ lose)
 Smaller dimers because of fragmentation → higher vapor pressure
 → SOA mass suppression (main reason)

However:

d. Alkoxy-Peroxy Pathway

Produce more peroxy radical (even with lower [OH])

→ SOA mass gain (Compensate suppression)

Sarrafzadeh et al, 2016

SOA yield

after adjusting OH [%

Back up slides

Member of the Helmholtz Association

00 Month 2018

Page 14

HOM in photochemical systems

HOM are *efficiently* formed with OH by α -pinene (and β -pinene)

Berndt et al., 2016 Pullinen, PhD thesis, 2016

NO_X "controls" photochemical OH / HO₂ system

 $\label{eq:how} \begin{array}{l} \text{Iow NO}_{\chi} \\ \text{HO}_2 + \text{HO}_2 \rightarrow \text{H}_2\text{O}_2 + \text{O}_2 \\ \text{radical sink} \end{array}$

 $\begin{array}{l} \text{medium NO}_{\chi} \\ \text{HO}_2 + \text{NO} \rightarrow \text{OH} + \text{NO}_2 \\ \text{radical recycling} \end{array}$

high NO_X $NO_2 + OH + M \rightarrow HNO_3$ radical sink

Starting point: β -pinene SOA yield as f[NO_x]

HOM-ON, HOM-PP -> SOA: condensation

- Photochemistry in JPAC into ss
- Add seed aerosol increase surface sink, decrease HOM lifetime
- Apply gas-phase kinetics

Apply: Correction for NPF, factors 1 -1.17. Correction for OH, factors of 0.8 - 1.2 reference for normalization: $(9.1 \cdot 10^7 \pm 5.8 \cdot 10^6 \text{ cm}^{-3} \text{ s}^{-1} \text{ at } \sim 0.3 \text{ ppb NO}_x)$

Black: HOM concentration fairly constant Mass decreases: HOM lower with lower molecular weight

Red: Hydrolysis of type HOM-RONO2 -> HOM-ROH will affect the HOM mass

Forschungszentrum