An intercomparison of methods for HO_2 and CH_3O_2 detection and kinetic study of the $HO_2 + CH_3O_2$ cross-reaction in the Highly Instrumented Reactor for Atmospheric Chemistry (HIRAC)

Lavinia Onel, Alexander Brennan, Freja F. Østerstrøm, Michele Gianella, Lisa Whalley, Gus Hancock, Paul Seakins, Grant Ritchie and Dwayne Heard

• Laser-Induced Fluorescence (LIF) spectroscopy at low-pressure, known as Fluorescence Assay by Gas Expansion (FAGE) is most commonly used for the HO₂ detection in the atmosphere

- Laser-Induced Fluorescence (LIF) spectroscopy at low-pressure, known as Fluorescence Assay by Gas Expansion (FAGE) is most commonly used for the HO₂ detection in the atmosphere
- A new method for CH₃O₂ radicals detection using FAGE has been developed

- Laser-Induced Fluorescence (LIF) spectroscopy at low-pressure, known as Fluorescence Assay by Gas Expansion (FAGE) is most commonly used for the HO_2 detection in the atmosphere
- A new method for CH₃O₂ radicals detection using FAGE has been developed
- As FAGE is an indirect method and requires calibration it has been validated performing intercomparisons of measurements of HO₂ and CH₃O₂ by FAGE and the direct and absolute Cavity Ring-Down Spectroscopy (CRDS)

- Laser-Induced Fluorescence (LIF) spectroscopy at low-pressure, known as Fluorescence Assay by Gas Expansion (FAGE) is most commonly used for the HO_2 detection in the atmosphere
- A new method for CH₃O₂ radicals detection using FAGE has been developed
- As FAGE is an indirect method and requires calibration it has been validated performing intercomparisons of measurements of HO_2 and CH_3O_2 by FAGE and the direct and absolute Cavity Ring-Down Spectroscopy (CRDS)
- FAGE has been used in kinetic studies of the $HO_2 + CH_3O_2$ cross-reaction within the HIRAC chamber

HO₂ and CH₃O₂ radicals in the troposphere

- HO₂ is generated directly by the oxidation of CO and indirectly by the oxidation of VOCs
- CH₃O₂ is the most abundant RO₂ in the atmosphere
- A dominant source of CH₃O₂ is the oxidation of CH₄

HO₂ and CH₃O₂ radicals in the troposphere

- HO₂ is generated directly by the oxidation of CO and indirectly by the oxidation of VOCs
- CH₃O₂ is the most abundant RO₂ in the atmosphere
- A dominant source of CH₃O₂ is the oxidation of CH₄

HO₂ and CH₃O₂ in the troposphere

• HO₂ is measured by FAGE by conversion to OH; typically the measured [HO₂] peaks at daytime at a few 10⁸ cm⁻³.

HO_2 and CH_3O_2 in the troposphere

- HO₂ is measured by FAGE by conversion to OH; typically the measured [HO₂] peaks at daytime at a few 10⁸ cm⁻³.
- Currently there are **no specific measurements** of the concentration of CH_3O_2 or any other RO_2 by any direct or indirect method.

HO_2 and CH_3O_2 in the troposphere

- HO₂ is measured by FAGE by conversion to OH; typically the measured [HO₂] peaks at daytime at a few 10⁸ cm⁻³.
- Currently there are **no specific measurements** of the concentration of CH_3O_2 or any other RO_2 by any direct or indirect method.
- The sum of organic RO₂ has been measured in the atmosphere using CIMS (Chemical Ionisation Mass Spectrometry), PERCA (Peroxy Radical Chemical Amplifier) method and more recently RO_xLIF method.

HO_2 and CH_3O_2 in the troposphere

- HO₂ is measured by FAGE by conversion to OH; typically the measured [HO₂] peaks at daytime at a few 10⁸ cm⁻³.
- Currently there are **no specific measurements** of the concentration of CH_3O_2 or any other RO_2 by any direct or indirect method.
- The sum of organic RO₂ has been measured in the atmosphere using CIMS (Chemical Ionisation Mass Spectrometry), PERCA (Peroxy Radical Chemical Amplifier) method and more recently RO_xLIF method.
- Box modelling using the Master Chemical Mechanism (MCM) has found that the daytime $[CH_3O_2]$ peaks in the range ~(0.5 6) × 10⁸ cm⁻³.*

^{*} Whalley et al. ACP, 2010; 2011; 2018

A new method for the selective and sensitive detection of CH_3O_2 radicals

• CH₃O₂ radicals are detected by titration with known amounts of NO to generate CH₃O radicals which are then detected using FAGE.

```
CH_3O_2 + NO \rightarrow CH_3O + NO_2
LIF detection
```

• The $A \leftarrow X$ electronic excitation of CH₃O radicals is used to detect these radicals with high sensitivity and selectively by LIF.

A new method for the selective and sensitive detection of CH_3O_2 radicals

The method is similar to the FAGE method used for HO₂ detection:

 $CH_3O_2 + NO \rightarrow CH_3O + NO_2$ LIF detection

 $HO_2 + NO \rightarrow OH + NO_2$ LIF detection

FAGE instrument

Gas flow, system at ~2.4 Torr

FAGE calibration

 Known concentrations of HO₂ and CH₃O₂ are generated in a calibration flow tube impinging outside the FAGE sample inlet

FAGE calibration

 Known concentrations of HO₂ and CH₃O₂ are generated in a calibration flow tube impinging outside the FAGE sample inlet

```
H_2O \xrightarrow{184.9 \text{ nm}} OH + H
H + O_2 \rightarrow HO_2
OH + CH_4 \rightarrow H_2O + CH_3
CH_3 + O_2 + M \rightarrow CH_3O_2 + M
                                                                                     Detectors
                                                                   HO_2 \rightarrow OH
                                                                                                       CH_3O_2 \rightarrow CH_3O
                                                                                  Fluorescence
     40 slm humidified air
     0.3 % CH<sub>4</sub>
                                                                                    Laser axis
    Hg pen-ray lamp (184.9 nm)
                                                              NO
                                                                                               NO
                                   quartz window
```

Gas flow, system at ~2.4 Torr

Methoxy (CH₃O) excitation spectrum

• $\lambda_{\text{online}} = 297.79 \text{ nm}$ -4000, **2017** • $\lambda_{\text{offline}} = \lambda_{\text{online}} + 2.5 \text{ nm}$

Onel et al. AMT, 10, 3985–4000, **2017**

FAGE calibration plot

S/N = 2 • $LOD(CH_3O_2) = (1.2 \pm 0.1) \times 10^9 \text{ cm}^{-3}$ 30 s averaging time

 $(1.8 \pm 0.2) \times 10^8 \text{ cm}^{-3}$ 20 min averaging time

FAGE calibration plot

S/N = 2 • $LOD(CH_3O_2) = (1.2 \pm 0.1) \times 10^9 \text{ cm}^{-3}$ 30

30 s averaging time

 $LOD(HO_2) = (1.6 \pm 0.2) \times 10^6 \text{ cm}^{-3}$

 $(1.8 \pm 0.2) \times 10^8 \text{ cm}^{-3}$ 20 min averaging time FAGE signal / counts s⁻¹ mW⁻¹ 20 -15-10 slope = C_{CH3O2} = (4.1 ± 1.4) × 10⁻¹⁰ counts s⁻¹ mW⁻¹ cm³ 5 0 1x10¹⁰ 2x10¹⁰ 3x10¹⁰ 4x10¹⁰ 5x10¹⁰ 0 $[CH_{3}O_{2}] / cm^{-3}$ Onel et al. AMT, 10, 3985–4000, 2017

Potential of the new method to be used in field measurements of CH₃O₂

 $LOD = (1.8 \pm 0.2) \times 10^8 \text{ cm}^{-3}$

S/N = 2 and 20 min averaging time

tropical Atlantic ocean*

* Whalley et al. ACP, 2010

Potential of the new method to be used in field measurements of CH_3O_2

 $LOD = (1.8 \pm 0.2) \times 10^8 \text{ cm}^{-3}$

S/N = 2 and 20 min averaging time

Further optimisations of FAGE sensitivity:

- removal of the fibre optic cables to deliver the probe laser beam directly
- lower pressure (currently 2.4 Torr)

Validation of the FAGE method for detection of HO₂ and CH₃O₂ FAGE–CRDS intercomparison

HIRAC (Highly Instrumented Reactor for Atmospheric Chemistry)

HIRAC (Highly Instrumented Reactor for Atmospheric Chemistry)

First HO₂ and CH₃O₂ CRDS measurements in an atmospheric simulation chamber

HIRAC (Highly Instrumented Reactor for Atmospheric Chemistry)

HIRAC (Highly Instrumented Reactor for Atmospheric Chemistry)

 $CI + CH_{3}OH \rightarrow CH_{2}OH + HCI$ $CH_{2}OH + O_{2} \rightarrow HO_{2} + CH_{2}O$

HIRAC (Highly Instrumented Reactor for Atmospheric Chemistry)

 $CI + CH_4 \rightarrow CH_3 + HCI$ $CH_3 + O_2 + M \rightarrow CH_3O_2 + M$

Intercomparison of HO₂ and CH₃O₂ by FAGE and CRDS

• CRDS probes HO₂ using the excitation of the first O-H overtone at 1.5 μ m and CH₃O₂ using the A \leftarrow X electronic excitation at 1.3 μ m

Onel et al. AMT, 10, 4877–4894, 2017

FAGE-CRDS correlation plots

Onel et al. AMT, 10, 4877–4894, **2017**

$HO_2 + CH_3O_2$ cross-reaction

$$HO_{2} + CH_{3}O_{2} \longrightarrow O_{2} + CH_{3}COOH \qquad 0.9$$

$$\longrightarrow O_{2} + HCHO + H_{2}O \qquad 0.1$$

• A main sink for CH_3O_2 radicals in remote areas (low NO_x)

tropical rainforest

tropical Atlantic ocean

Kinetics of the $HO_2 + CH_3O_2$ cross-reaction

 $HO_2 + CH_3O_2 \xrightarrow{k} Products$

- 23% 1 σ uncertainty in the value of the overall rate coefficient at 298 K 5.2 × 10⁻¹² cm³ molecule⁻¹ s⁻¹ [1]. The majority of previous studies used UV-absorption spectroscopy, which is often an unselective technique.
- Clear need for kinetic studies of this reaction using a selective method.

[1] http://iupac.pole-ether.fr

Kinetics of the HO₂ + CH₃O₂ cross-reaction

Kinetics of the HO₂ + CH₃O₂ cross-reaction

HO₂ and CH₃O₂ are measured in alternation

Kinetics of the HO₂ + CH₃O₂ cross-reaction

HO₂ and CH₃O₂ are measured in alternation

HO₂ and CH₃O₂ second–order decays

- Reaction mixtures: CH₄/CH₃OH/Cl₂/air
- Different [CH₃O₂]/[HO₂] ratios

HO₂ and CH₃O₂ are measured in alternation

Kinetic analysis

Reaction $CH_3O_2 + CH_3O_2 \rightarrow CH_3OH + HCHO + O_2$ $CH_3O_2 + CH_3O_2 \rightarrow CH_3O + CH_3O + O_2$ $CH_3O + O_2 \rightarrow HCHO + HO_2$ $CH_{2}O_{2} + HO_{2} \rightarrow CH_{2}OOH + O_{2}$ cross-reaction \rightarrow HCHO + H₂O + O₂ $HO_2 + HO_2 + (M) \rightarrow H_2O_2 + O_2 + (M)$

CH₃O₂ self-reaction

HO₂ self-reaction

Kinetic analysis

time /s

HO₂ + CH₃O₂ cross-reaction: Temperature dependence

• Experiments at 268, 284, 295, 323, and 344 K (-5 to 70 °C)

IUPAC: $k_{CH3O2 + HO2} = 3.8 \times 10^{-13} \times exp(780/T) \text{ cm}^3 \text{ s}^{-1} (205-580 \text{ K})$ $\Delta E/R = \pm 100 \text{ K}$

HO₂ + CH₃O₂ cross-reaction: Temperature dependence

• Experiments at 268, 284, 295, 323, and 344 K (-5 to 70 °C)

IUPAC: $k_{CH3O2 + HO2} = 3.8 \times 10^{-13} \times exp(780/T) \text{ cm}^3 \text{ s}^{-1} (205-580 \text{ K})$ $\Delta E/R = \pm 100 \text{ K}$

HO₂ + CH₃O₂ cross-reaction: Temperature dependence

• Experiments at 268, 284, 295, 323, and 344 K (-5 to 70 °C)

IUPAC: $k_{CH3O2 + HO2} = 3.8 \times 10^{-13} \times exp(780/T) \text{ cm}^3 \text{ s}^{-1} (205-580 \text{ K})$ $\Delta E/R = \pm 100 \text{ K}$

Conclusions and outlook

- Speciated detection of CH₃O₂ radicals by FAGE
 New and selective method
- Potential to use the method in field measurements of CH_3O_2
- Speciated detection of C₂H₅O₂ radicals by FAGE

Planned: development of the method to detect bigger RO₂ radicals

Conclusions and outlook

- Speciated detection of CH₃O₂ radicals by FAGE
 New and selective method
- Potential to use the method in field measurements of CH_3O_2
- Speciated detection of C₂H₅O₂ radicals by FAGE

Planned: development of the method to detect bigger RO₂ radicals

• FAGE–CRDS intercomparisons for HO_2 and CH_3O_2 to validate the FAGE method.

Conclusions and outlook

- Speciated detection of CH₃O₂ radicals by FAGE
 New and selective method
- Potential to use the method in field measurements of CH_3O_2
- Speciated detection of C₂H₅O₂ radicals by FAGE

Planned: development of the method to detect bigger RO₂ radicals

- FAGE–CRDS intercomparisons for HO_2 and CH_3O_2 to validate the FAGE method.
- The FAGE method has been used to detect HO₂ and CH₃O₂ in HIRAC to reduce the uncertainty in the k_{HO2+CH3O2} reported by IUPAC.
 Planned: New kinetic studies, e.g. OH + CH₃COOH (CH₃O₂: intermediate)

- Alexander Brennan
- Freja F. Østerstrøm
- Joseph Parr
- Grace Ronnie
- James Hooper
- Dwayne Heard
- Paul Seakins
- Lisa Whalley
- Michele Gianella
- Ana Lawry Aguila
- Nicole Ng
- Gus Hancock
- Grant Ritchie

CARL§BERG FOUNDATION

