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Overview

• Laser-Induced Fluorescence (LIF) spectroscopy at low-pressure, known as
Fluorescence Assay by Gas Expansion (FAGE) is most commonly used for the
HO2 detection in the atmosphere

• A new method for CH3O2 radicals detection using FAGE has been developed

• As FAGE is an indirect method and requires calibration it has been validated
performing intercomparisons of measurements of HO2 and CH3O2 by FAGE
and the direct and absolute Cavity Ring-Down Spectroscopy (CRDS)

• FAGE has been used in kinetic studies of the HO2 + CH3O2 cross-reaction
within the HIRAC chamber



HO2 and CH3O2 radicals in the troposphere
• HO2 is generated directly by the oxidation of CO and indirectly by the oxidation
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HO2 and CH3O2 in the troposphere
• HO2 is measured by FAGE by conversion to OH; typically the measured [HO2] peaks

at daytime at a few 108 cm-3.

• Currently there are no specific measurements of the concentration of CH3O2 or
any other RO2 by any direct or indirect method.

• The sum of organic RO2 has been measured in the atmosphere using CIMS
(Chemical Ionisation Mass Spectrometry), PERCA (Peroxy Radical Chemical
Amplifier) method and more recently ROxLIF method.

• Box modelling using the Master Chemical Mechanism (MCM) has found that the
daytime [CH3O2] peaks in the range ~(0.5 - 6) × 108 cm-3.*

* Whalley et al. ACP, 2010; 2011; 2018



A new method for the selective and sensitive 
detection of CH3O2 radicals

• CH3O2 radicals are detected by titration with known amounts of NO to
generate CH3O radicals which are then detected using FAGE.

CH3O2 + NO  CH3O + NO2

• The A  X electronic excitation of CH3O radicals is used to detect these
radicals with high sensitivity and selectively by LIF.

LIF detection



A new method for the selective and sensitive 
detection of CH3O2 radicals

The method is similar to the FAGE method used for HO2 detection:

CH3O2 + NO  CH3O + NO2

LIF detection LIF detection

HO2 + NO  OH + NO2



FAGE instrument
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CH3O2  CH3O HO2  OH
Detectors

Gas flow, system at ~2.4 Torr

NO

Laser axis

Fluorescence

NO
Hg pen-ray lamp (184.9 nm)

40 slm humidified air
0.3 % CH4

quartz window

FAGE calibration
• Known concentrations of HO2 and CH3O2 are generated in a calibration flow tube

impinging outside the FAGE sample inlet

H2O OH + H

H + O2  HO2

OH + CH4  H2O + CH3

CH3 + O2 + M  CH3O2 + M

184.9 nm



Methoxy (CH3O) excitation spectrum
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FAGE calibration plot
S/N = 2 • LOD(CH3O2) = (1.2  0.1) × 109 cm-3

(1.8  0.2) × 108 cm-3

30 s averaging time

20 min averaging time

slope = CCH3O2 = (4.1 ± 1.4) × 10-10 counts s-1 mW-1 cm3
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FAGE calibration plot
S/N = 2

slope = CCH3O2 = (4.1 ± 1.4) × 10-10 counts s-1 mW-1 cm3

Onel et al. AMT, 10, 3985–4000, 2017

LOD(HO2) = (1.6  0.2) × 106 cm-3• LOD(CH3O2) = (1.2  0.1) × 109 cm-3

(1.8  0.2) × 108 cm-3

30 s averaging time

20 min averaging time



Potential of the new method to be used in field 
measurements of CH3O2

LOD = (1.8  0.2) × 108 cm-3

~ 6 × 108 cm-3 CH3O2

tropical Atlantic ocean*

S/N = 2 and 20 min averaging time

* Whalley et al. ACP, 2010



Potential of the new method to be used in field 
measurements of CH3O2

LOD = (1.8  0.2) × 108 cm-3

S/N = 2 and 20 min averaging time

Further optimisations of FAGE sensitivity:

 removal of the fibre optic cables to deliver the probe laser beam directly
 lower pressure (currently 2.4 Torr)
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Validation of the FAGE method for detection of 
HO2 and CH3O2

FAGE–CRDS intercomparison
HIRAC (Highly Instrumented Reactor for Atmospheric Chemistry)

First HO2 and CH3O2 CRDS measurements
in an atmospheric simulation chamber

NIR
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Validation of the FAGE method for detection of 
HO2 and CH3O2

FAGE–CRDS intercomparison
HIRAC (Highly Instrumented Reactor for Atmospheric Chemistry)
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Validation of the FAGE method for detection of 
HO2 and CH3O2

FAGE–CRDS intercomparison
HIRAC (Highly Instrumented Reactor for Atmospheric Chemistry)
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Validation of the FAGE method for detection of 
HO2 and CH3O2

FAGE–CRDS intercomparison
HIRAC (Highly Instrumented Reactor for Atmospheric Chemistry)

Cl + CH4  CH3 + HCl
CH3 + O2 + M  CH3O2 + M

~ 1.3 m

CH3O2

Cl2  2Cl
360 nm 



Onel et al. AMT, 10, 4877–4894, 2017

Intercomparison of HO2 and CH3O2 by 
FAGE and CRDS

• CRDS probes HO2 using the excitation of the first O-H overtone at 1.5 m and
CH3O2 using the AX electronic excitation at 1.3 m

lamps on

lamps off



FAGE–CRDS correlation plots
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HO2 + CH3O2 cross-reaction

~ 6 × 108 cm-3 CH3O2

~ 2 × 108 cm-3 CH3O2

tropical Atlantic ocean tropical  rainforest

• A main sink for CH3O2 radicals in remote areas (low NOx)

HO2 + CH3O2 O2 + CH3COOH 0.9
O2 + HCHO + H2O 0.1



Kinetics of the HO2 + CH3O2 cross-reaction 

• 23% 1 uncertainty in the value of the overall rate coefficient at 298 K
5.2 × 10-12 cm3 molecule-1 s-1 [1]. The majority of previous studies used
UV-absorption spectroscopy, which is often an unselective technique.

• Clear need for kinetic studies of this reaction using a selective method.

[1] http://iupac.pole-ether.fr

HO2 + CH3O2 Products
k
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• HO2 and CH3O2 are measured in alternation
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HO2 and CH3O2 second–order decays
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• Reaction mixtures: CH4/CH3OH/Cl2/air

• Different [CH3O2]/[HO2] ratios

• HO2 and CH3O2 are measured in alternation



Reaction
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HO2 + CH3O2 cross-reaction: Temperature dependence

• Experiments at 268, 284, 295, 323, and 344 K (-5 to 70 °C)
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HO2 + CH3O2 cross-reaction: Temperature dependence

• Experiments at 268, 284, 295, 323, and 344 K (-5 to 70 °C)

• Good agreement

• Smaller error margins
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IUPAC: kCH3O2 + HO2 = 3.8 × 10-13 × exp(780/T) cm3 s-1 (205-580 K)
E/R =  100 K
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Conclusions and outlook
 Speciated detection of CH3O2 radicals by FAGE

 Potential to use the method in field measurements of CH3O2

 Speciated detection of C2H5O2 radicals by FAGE

 FAGE–CRDS intercomparisons for HO2 and CH3O2 to validate the FAGE
method.

 The FAGE method has been used to detect HO2 and CH3O2 in HIRAC to
reduce the uncertainty in the kHO2+CH3O2 reported by IUPAC.

New and selective method

Planned: development of the method to detect bigger RO2 radicals

Planned: New kinetic studies, e.g. OH + CH3COOH (CH3O2: intermediate)



• Alexander Brennan

• Freja F. Østerstrøm

• Joseph Parr

• Grace Ronnie

• James Hooper

• Dwayne Heard

• Paul Seakins

• Lisa Whalley

• Michele Gianella

• Ana Lawry Aguila

• Nicole Ng

• Gus Hancock

• Grant Ritchie 44

//upload.wikimedia.org/wikipedia/en/b/b8/Leeds_University_logo.svg
//upload.wikimedia.org/wikipedia/en/b/b8/Leeds_University_logo.svg

