DIRECT PROBING OF PEROXY RADICAL CHEMISTRY: CONSTRAINTS ON ACCRETION & AUTOXIDATION

Zhao, Thornton, & Pye, PNAS 2018 Pye, D'Ambro, Lee, Shilling, et al

Office of Science

ACM 2018

Joel Thornton, Atmospheric Sciences University of Washington, thornton@atmos.uw.edu

+ Ozone \rightarrow Gas-phase Products

2

Ehn et al, Nature 2014 Berndt et al Nature Comm 2016

C₁₆ - C₂₀ vapors during a-pinene ozonolysis

Zhao et al AMT 2017 Mohr et al GRL 2017

lodide adduct HRToF-CIMS Spectra (Hyytiälä)

Mohr et al

Autoxidation and accretion in a-pinene oxidation

Flow reactor with In Situ Chemical Ionization

Berndt et al Nature Comm 2016 Hanson and Eisele

Example MS of 12 s a-pinene ozonolysis mixture

C₈₋₁₀H₁₂₋₁₈O₂₋₁₃

 $C_{16-20}H_{24-32}O_{4-13}$

RO₂ radicals: e.g., C₁₀H₁₅O₄₋₁₁ and C₁₀H₁₇O₅₋₁₁

$C_{16} - C_{20}$ vapors consistent w/RO₂ + R'O₂ source

 $[\mathbf{C}_{16-20}]_{ss} \sim \tau \cdot \delta \cdot k'' [\mathbf{RO}_2]^2$

Effects of OH scavenger on RO₂ radicals

Ehn et al., Nature, 2014; Rissanen et al., JPCA, 2015; Berndt et al., Nature Commun. 2016

Effects of OH scavenger on C₁₆₋₂₀ products

Formation pathways: e.g., $C_{10}H_{15}O_x + C_{10}H_{17}O_y \rightarrow C_{20}H_{32}O_z + O_2$

Formation pathways : e.g., $C_{10}H_{15}O_x + C_{10}H_{15}O_y \rightarrow C_{20}H_{30}O_z + O_2$

C_{16} - $C_{20} \sim 40\%$ from OH-derived RO₂

Deuterated dimers from D₁₁-cyclohexyl-O₂

Constraints on RO₂ fates: FOAM (MCM 3.3.1)

 $RO_2 + R'O_2$

RO₂ + RO₂ as LVOC source in chambers and field

Constraints on RO₂ fates

Autoxidation constraint: competition with NO

Autoxidation constraint: competition with NO

Constraints on RO₂ fates

"Reasonable Agreement" with Ehn et al Nature 2014 Berndt et al Nature Comm 2016

19

FOAM (MCM-based) Updates

20

Representing autoxidation improves predictions of OH + a-pinene chamber SOA

	HOM Yield	SOA Yield	O/C	C* of SOA
	% by mole	% by mass	mol mol ⁻¹	µg m⁻³
Base MCM v3.3.	.1 0	<1	0.59	104
CMAQ v5.2	0	7	0.52	55
(empirical)				
Updated	>3.3	17	0.64	1.3
Mechanism				
Observed	≥2.4	12 ± 4.6	0.68	0.08
	Berndt et al Nature Comm 2016 flow tube conditions	UV	V/PNNL multi-hour SO/ experiment	4

Updated mechanism predicts SOA using an internally consistent representation of composition & volatility.

Summary

- RO₂ + RO₂ → accretion products is a fairly general, albeit low-level branching in a-pinene oxidation
 4% average branching; k^{II} ~ 2x10⁻¹² cm³ s⁻¹
- Autoxidation rate constants for a significant fraction of a-pinene derived RO₂ are fast (10 − 20% at 1 to 3 s⁻¹)
 1 ppb NO → ~ 0.3 s⁻¹
- Combined, these are prompt & sizable sources of lowvolatility products w/a complex dependence on NOx

HOM enhanced in Atlanta urban plume

23

Pathways absent from community mechanisms

Pye et al, in review

Comparison to SOAFFEE Chamber Experiments

Updates to MCM-based mechanism

Vapor Pressure Lowering in a-Pinene Oxidation

C₁₆ - C₂₀ vapors during a-pinene ozonolysis

Gas-phase Accretion Chemistry

Reaction of SCI w/closed-shell OVOC and RO₂

RO₂ self and cross-reactions (either HOM-RO₂ or acyl-RO₂)

Kroll and Seinfeld, AE, 2008; Johnson and Marston, Chem. Soc. Rev., 2008 Sadezky et al., ACP, 2008; Zhao et al., PCCP, 2015

Autoxidation and Accretion in a-Pinene Oxidation

Particle Phase Accretion Chemistry

Kroll and Seinfeld, AE, 2008; Ziemann and Atkinson, Chem. Soc. Rev., 2012

Growth model: MABNAG (T. Yli-Juuti)

growth rate $\propto [C_i^{\nu} - (a_i K)C_i^*]$

Donahue et al, Faraday Discussions 2013 Tröstl et al Nature 2016

Molecular explanation of new particle growth

C₁₆₋₂₀ products <u>not</u> ion-induced clusters

C₁₆ – C₂₀ products are covalently bound

Fast-flow reactor studies (OH + α -Pinene)

Regional NO_x emissions enhance autoxidation →Secondary Organic Aerosol

(c) $C_{10}H_{17}O_7$ -RO₂ prod. rate (µg m⁻³ h⁻¹)

Secondary Organic Aerosol (SOA) - importance

Spracklen et al ACP 2011

*C** *estimated by Donahue et al.* [*ACP, 2011*]

Summary

43

With one instrument, capture suite of low & extremely low volatility organics that explain nano-particle growth

Autoxidation and dimer formation are key peroxy radical pathways to such vapors, drive <u>prompt</u> SOA formation

Prompt LVOC and ELVOC formation provides means for SOA formation rates to be sensitive to regional perturbations in oxidants

Insights from Molecular Composition

UW FIGAERO HR-ToF-CIMS

Electrospray Chemical Ionization

Zhao et al, AMT 2017

Atmos. Chem. Phys., 15, 7765–7776, 2015 www.atmos-chem-phys.net/15/7765/2015/ doi:10.5194/acp-15-7765-2015 © Author(s) 2015. CC Attribution 3.0 License.

Phase partitioning and volatility of secondary organic aerosol components formed from α -pinene ozonolysis and OH oxidation: the importance of accretion products and other low volatility compounds

F. D. Lopez-Hilfiker¹, C. Mohr^{1,7}, M. Ehn^{2,3}, F. Rubach³, E. Kleist⁴, J. Wildt⁴, Th. F. Mentel³, A. J. Carrasquillo⁵, K. E. Daumit⁵, J. F. Hunter⁵, J. H. Kroll⁵, D. R. Worsnop^{2,6}, and J. A. Thornton^{1,2,3}

Lopez-Hilfiker et al ES&T 2017 D'Ambro et al ACP 2017 D'Ambro et al ES&T 2017

Conceptual model of MTSOA evolution

Adduct stability in transfer optics

Lee and Lopez-Hilfiker et al 2014; Lopez-Hilfiker et al AMT 2016; Iyer et al, JPCA 2016

Binding Energies: $Li^+ > Na^+ > K^+ > NH_4^+$

$C_{16} - C_{20}$ "Dimers" are covalently bound

Possible structures from particle phase studies

$C_{17}H_{26}O_8$

Peroxyhemiacetal

Hydroperoxyhemiacetal

 $C_{19}H_{28}O_7$

Kristensen et al ES&TL 2016 Kristensen et al ACP 2016 Zhao (Y) et al PCCP 2015 Zhao (J) et al PNAS 2015 Ziemann, JPCA 2002

Volatility distribution to explain growth

Measured vapor concentration >> c* estimates

RO₂ autoxidation and Self-Reaction: A Route to Prompt LVOC Formation

