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Getting emissions right is the first step in predictive 
air quality modeling.

• VOC emissions are especially challenging
• Unlike chemistry, emissions are a moving target
• But if we understand the chemistry, we can back out the emissions.

Guenther et al., 2012

MEGAN v2.1 base emission factors (εisop)
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Applications/Implications

Can current chemical mechanisms be used to improve VOC emission estimates?
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First: a success story
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High-resolution inversion of OMI formaldehyde columns to quantify isoprene emission on ecosystem-relevant 
scales: application to the southeast US. Kaiser et al., 2018
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Mechanism must reproduce the observed VOC-NOX-OVOC 
relationship.

Wolfe et al., 2016

SENEX 2013 observations: Comparison with box model:

5



NOx emissions need to be right, and spatially resolved.

2° × 2.5°

0.25° × 0.3125°NOx emissions (log scale) Isoprene emission factor 0.25° × 0.3125°

2° × 2.5°

• HCHO has much higher larger under high NOx conditions!
• Coarse simulations show a high HCHO bias (Yu et al., 2016)
• GEOS-Chem NOx constrained using a suite of observations (Travis et al., 2016)
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Isoprene and HCHO during SEAC4RS
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OMI HCHO column
1012 atom C cm-2 s-1

1016 molecules cm-2

Aug/Sept 2013

Observed HCHO column
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HCHO observations indicate modeled isoprene 
emissions are biased high by 40%.

Optimal scaling factors

Prior isoprene emissions

Optimized emissions

dimensionless

1012 atom C cm-2 s-1
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Optimized emissions produce better agreement with SEAC4RS
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Right NOx is crucial for accurate inversions
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Implications for air quality

Reduction in surface O3

ppb

Anthropogenic
28%

Monoterpenes
20%

Isoprene
42%

13:00-17:00 L.T.

Fires 
11%

Kim et al., 2015

Shifting organic aerosol sources

Halved!
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Evaluating updated emission inventories

Optimized emissions

1012 atom C cm-2 s-1

Ozarks: 46 reduction%

• Dense mixed pine-oak forest
• Vertical heterogeneity in canopy 

structure? 
Yu et al., 2017.

Edwards Plateau:  
factor of 3 reduction

• Oak/Juniper/Elm 
• Fraction of forest cover varies 

widely in landcover maps 
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Extending this framework:

Forward model

VOC
Emission

OVOC
Observation

chemistry
transport

Inverse problem

What are the uncertainties 
in our observations?

Are OVOC yields 
well constrained?

• The next generation of satellites• What is the status for HCHO yields from other VOCs?
• What other OVOCs would be useful?
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Using HCHO to constrain other VOCs

Zhu et al., 2017What are the HCHO precursors?
What are the OVOC yields?
Are direct emissions significant?
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Using glyoxal and formaldehyde together

Cao et al., ACP, 2018

Mechanism based on MCM v 3.1
NOx dependency of glyoxal yield across VOCs has received much less attention.
The differing yields provide new information to constrain top-down studies. 15



The context of this work: a new era of satellites
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TROPOMI is on-line!

Oct 27 HCHO VCDs 
(unfiltered for QC)

TROPOMIOMI

https://s5phub.copernicus.eu

More pixels…  More successful pixels… More information!
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