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Getting emissions right is the first step in predictive
air quality modeling.
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* VOC emissions are especially challenging
* Unlike chemistry, emissions are a moving target
e But if we understand the chemistry, we can back out the emissions.




Applications/Implications

Can current chemical mechanisms be used to improve VOC emission estimates?
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First: a success story
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Inverse problem

High-resolution inversion of OMI formaldehyde columns to quantify isoprene emission on ecosystem-relevant
scales: application to the southeast US. Kaiser et al., 2018
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Mechanism must reproduce the observed VOC-NO,-OVOC
relationship.

SENEX 2013 observations: Comparison with box model:
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NOx emissions need to be right, and spatially resolved.

NO, emissions (log scale) 0.25° x 0.3125° Isoprene emission factor O 25 X O 3125
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* HCHO has much higher larger under high NOx conditions!
e Coarse simulations show a high HCHO bias (Yu et al., 2016)
 GEOS-Chem NOXx constrained using a suite of observations (Travis et al., 2016)



Isoprene and HCHO during SEAC*RS
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HCHO observations indicate modeled isoprene

emissions are biased high by 40%.
Pripr isqprene emissions

Optimal scaling factors
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Optimized emissions produce better agreement with SEAC*RS
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Right NO, is crucial for accurate inversions

Model (ppb)
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Implications for air quality

Shifting organic aerosol sources Reduction in surface O,
|13:00-17:00 LT '
y o| Isoprene : .- -
nthropogenic : ]
28% 42% 20 " |

L

o
-

Fires .
11% ‘l_._
|
Kim et al., 2015 _ TS
0 05 1 1.5 2 25 3 35

ppb

11



Evaluating updated emission inventories

o o Ozarks: 46 reduction% A
Optimized emissions | |
. . . . * Dense mixed pine-oak forest

* \ertical heterogeneity in canopy
structure?

Yu et al., 2017. /
\

Edwards Plateau:
factor of 3 reduction
e Oak/Juniper/Elm

* Fraction of forest cover varies
widely in landcover maps %

1012 atom C cm™2s?
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Extending this framework:
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Are OVOC yields

well constrained?

* What is the status for HCHO vyields from other VOCs?
* What other OVOCs would be useful?

%

0,

What are the uncertainties
in our observations?

* The next generation of satellites
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HCHO column
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Using HCHO to constrain other VOCs

(a) Houston-Galveston-Brazoria (HGB)

HCHO column (-2.2 + 1.1% a™ )

(‘b) Cola Laké il S;nds. éanad;
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What are the HCHO precursors?

What are the OVOC yields?

Are direct emissions significant?
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(c) Northwestern US

HCHO column (5.4 +2.0% a™ ')

Evergreen needleleaf forest (43 +05% a ') 40

(d) llinois + Missouri

HCHO column
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Zhu et al., 2017
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Using glyoxal and formaldehyde together
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Mechanism based on MCM v 3.1
NOx dependency of glyoxal yield across VOCs has received much less attention.
The differing yields provide new information to constrain top-down studies.



The context of th|s work a new era of satellites
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TROPOMII is on-line!

https://s5phub.copernicus.eu

Oct 27 HCHO VCDs
(unfiltered for QC)
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More pixels... More successful pixels... More information!
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