Characterization of Chemical Mechanisms used in Top-Down VOC Emission Estimates

Jennifer Kaiser

ACM meeting

Dec 5 2018

Getting <u>emissions</u> right is the first step in predictive air quality modeling.

MEGAN v2.1 base emission factors (ε_{isop})

- VOC emissions are especially challenging
- Unlike chemistry, emissions are a moving target
- But if we understand the <u>chemistry</u>, we can back out the emissions.

Applications/Implications

well constrained?

Can current chemical mechanisms be used to improve VOC emission estimates?

in our observations?

First: a success story

High-resolution inversion of OMI formaldehyde columns to quantify isoprene emission on ecosystem-relevant scales: application to the southeast US. Kaiser et al., 2018

Mechanism must reproduce the observed VOC-NO_X-OVOC relationship.

Comparison with box model:

NOx emissions need to be right, and spatially resolved.

- HCHO has much higher larger under high NOx conditions!
- Coarse simulations show a high HCHO bias (Yu et al., 2016)
- GEOS-Chem NOx constrained using a suite of observations (Travis et al., 2016)

Isoprene and HCHO during SEAC⁴RS

HCHO observations indicate modeled isoprene emissions are biased high by 40%.

Prior isoprene emissions

8

Optimized emissions produce better agreement with SEAC⁴RS

Measurement (ppb)

9

Right NO_x is crucial for accurate inversions

Implications for air quality

Reduction in surface O_3

1.5

2

ppb

2.5

3

3.5

0.5

0

Kim et al., 2015

11

Evaluating updated emission inventories

widely in landcover maps

Extending this framework:

Are OVOC yields well constrained?

- What is the status for HCHO yields from other VOCs?
- What other OVOCs would be useful?

What are the uncertainties in our observations?

• The next generation of satellites

Using HCHO to constrain other VOCs

What *are* the HCHO precursors? What are the OVOC yields? Are direct emissions significant?

Zhu et al., 2017

Using glyoxal and formaldehyde together

Mechanism based on MCM v 3.1

NOx dependency of glyoxal yield across VOCs has received much less attention. The differing yields provide new information to constrain top-down studies.¹⁵

The context of this work: a new era of satellites

TEMPO (hourly) Tropospheric Emissions: Monitoring of Pollution

Sentinel-4 (hourly)

GEMS (hourly) Geostationary Environmental Monitoring Spectrometer

Sentinel-5P (once per day)

GaoFen-5 (once per day) $_{1}$

TROPOMI is on-line!

https://s5phub.copernicus.eu

Oct 27 HCHO VCDs (unfiltered for QC)

More pixels... More *successful* pixels... More information!

Acknowledgements

- SENEX team
- SEAC⁴RS team
- Daniel Jacob
- Harvard Atmospheric
 Chemistry Modeling Group
- Harvard–Smithsonian
 Center for Astrophysics
- Funding:

ESSF: NNX14AK97H

