Evolution of OH reactivity in low-NO volatile organic compound photooxidation investigated by the fully explicit GECKO-A model

Zhe Peng, Julia Lee-Taylor, Harald Stark, John Orlando, Bernard Aumont and Jose-Luis Jimenez
1 University of Colorado Boulder
2 NCAR ACOM
3 LISA, Université Paris-Est Créteil

Atmospheric Chemical Mechanism Conference
November 18, 2020
OH reactivity governs OH lifetime

• OH reactivity (OHR) is
 – the sum of the products of the reactant concentrations (c_i) and their OH reaction rate coefficients (k_i).
 – $OHR = \sum_i k_i c_i$

• OHR provides constraints on OH lifetime and budget

Adapted from OH Reactivity Wiki
(https://sites.google.com/site/reactivitywiki/home)
OHR is not well constrained

- Significant missing reactivity
 - Likely unspeciated intermediates and products

- Underestimation by Master Chemical Mechanism
 - Mechanism incompleteness

- OHR in clean remote regions
 - Low NO, high photochemical age

Williams and Brune. *A roadmap for OH reactivity research.* Atmos. Environ. 2015

Sato et al. AE 2017

Whalley et al. ACP 2016
We use the fully explicit GECKO-A model

• To model the OHR evolution in the low-NO photooxidation of
 – Alkanes (including decane)
 – A typical aromatic, m-xylene
 – A typical alkene, isoprene

• In different environments
 – Atmosphere
 – Large Teflon chamber
 – Oxidation flow reactor (OFR)

• Until very high (>10 d) photochemical ages
GECKO-A Generator Principles

Precursors

GECKO-A

Computer program:
Automatically generates oxidation scheme (reactions, mass transfer between phases, …)

Protocol:
Identify oxidation pathways
Estimates missing data

Explicit chemical schemes + properties (Psat, H, …)

Beginning:

\[
\begin{align*}
\text{CH}_3\text{CH}_2\text{CH}_3 & \quad + \text{OH} \\
\text{CH}_3\text{CH}_2\text{CH}_3 & \quad + \text{OH} \\
\text{CH}_3\text{CH(OO.)CH}_3 & \quad + \text{NO} \\
\text{CH}_3\text{CH}_2\text{CH}_2(\text{OO.}) & \quad + \text{NO} \\
\text{…} & \quad \text{…} \\
\text{CO}_2 + \text{H}_2\text{O} & \quad \text{end}
\end{align*}
\]

Slide courtesy of Julia Lee-Taylor
Decane oxidation: ambient case

- Diurnal vs. constant sunlight makes little difference

Decane \rightarrow C10 hydroperoxides (\rightarrow C10 ketones)

\rightarrow Multifunctional species

\rightarrow Fragments (mainly C1 and C2, some larger ones)

\rightarrow CO (or HCOOH) \rightarrow CO$_2$
A common oxidation chain

- **Precursor** \rightarrow first-generation products (\rightarrow second-generation products) \rightarrow saturated multifunctional species \rightarrow fragmentation products \rightarrow CO (HCOOH) \rightarrow CO$_2$

- **Decane** \rightarrow C10 hydroperoxides (\rightarrow C10 ketones) \rightarrow saturated multifunctional species \rightarrow fragmentation products \rightarrow CO (HCOOH) \rightarrow CO$_2$

- **m-Xylene** \rightarrow oxygenated alkenes (\rightarrow oxygenated alkenes) \rightarrow saturated multifunctional species \rightarrow fragmentation products \rightarrow CO (HCOOH) \rightarrow CO$_2$

- **Isoprene** \rightarrow ISOPOOH (\rightarrow IEPOX) \rightarrow saturated multifunctional species \rightarrow fragmentation products \rightarrow CO (HCOOH) \rightarrow CO$_2$
OHR per C atom

- OHR per C atom converges when saturated multifunctional species are formed
 \[k_{\text{per C}} = 1-2 \times 10^{-12} \text{ cm}^3 \text{ atom}^{-1} \text{ s}^{-1} \]

- Similar decay afterwards

- Can be parameterized for lumped model
OH consumed per C atom

- OH oxidation once \rightarrow C oxidation state (OSc) $+\sim 2$
 - ~ 3 OH oxidations for OSc from ~ -2 to $+4$
Chamber w/o wall is similar to the atmosphere

- Similar UV range
- Similar OH concentration
- No other perturbation

Decane oxidation
Substantial OVOC wall losses in Teflon chamber

- Near-complete wall loss of C10 multifunctional species
- No OHR peak
- Significant hindrance of gas-phase chemistry at higher ages
Decane oxidation:
OFR with strong water vapor photolysis

In the OFR case
• Suppression of products at low ages
 – OH:HO₂ → 1:1 due to strong H₂O+hν(185 nm) → OH+HO₂
• Less fragmentation products at high ages
 – Insufficient organic photolysis
Summary

• Common oxidation chain
 – Precursor \rightarrow first-generation products \rightarrow second-generation products \rightarrow saturated multifunctional species \rightarrow fragmentation products \rightarrow CO (HCOOH) \rightarrow CO$_2$
 – Similar OHR per C evolution since saturated multifunctional species

• Substantial OVOC chamber wall losses for medium-size precursors
 – May lead to qualitatively different results

• OFR deviations
 – RO$_2$ accumulation at lower ages at high RH and lamp setting
 – Lack of efficient organic photolysis at higher ages