Organic Chemical Composition of Gases & Particles Measured During the October 2017 Northern California Wildfire Plumes

Yutong Liang, Coty Jen, Robert Weber, Pawel Misztal, Allen Goldstein

Atmospheric Chemical Mechanisms Conference, Nov 13, 2020
Large wildfires have become more common in the western US

- Since 2015, annual average PM$_{2.5}$ is clearly increased by wildfires
Oct 2017 Northern California Wildfires

- Fires triggered by power line/electrical failures, developed under the Diablo wind.
- On the “deadliest & most destructive California wildfires” list

<table>
<thead>
<tr>
<th>Fire</th>
<th>Size (hectares)</th>
<th>Structures destructed</th>
<th>Deaths</th>
</tr>
</thead>
<tbody>
<tr>
<td>Tubbs</td>
<td>14,895</td>
<td>5,643</td>
<td>22</td>
</tr>
<tr>
<td>Redwood Valley</td>
<td>14,780</td>
<td>544</td>
<td>9</td>
</tr>
<tr>
<td>Atlas</td>
<td>20,891</td>
<td>781</td>
<td>6</td>
</tr>
<tr>
<td>Nuns</td>
<td>22,008</td>
<td>1,355</td>
<td>3</td>
</tr>
</tbody>
</table>
Impacts on SF Bay Area Air Quality

PUBLIC HEALTH

News // California Wildfires

San Francisco AQI jumps to 271 on Friday, worst air quality ever recorded in the city

Amy Graff, SFGATE
Nov. 16, 2018 | Updated: Nov. 16, 2018 4:35 p.m.
Gas and particles in wildfire smoke

• Organic gases and particles are the main pollutants emitted from wildfires.

Unknowns:
• What is the **molecular composition** of wildfire smoke organic aerosol (BBOA) we inhaled?
• Can **primary BBOA marker compounds** indicate the type of fuel burned?
• What are the **secondary BBOA markers**?
Measurements

- UC Berkeley campus: ~ 60 km from the fires
- Collected 74 filter samples (3-4 h) using a 6-channel sequential sampler, analyzed with GC×GC-ToFMS
- Measured volatile organic compounds (VOCs) by PTR-ToFMS

From thermal desorption and derivatization

1st column: volatility separation

2nd column: polarity separation

Modulator

To ToF-MS
Sugars are dominant components of BBOA particles

- Quantified 570+ organic compounds in the particle phase. Up to 20% of OC can be explained by the GC × GC measurements.
- Sugar & sugar derivatives are the dominant compounds in smoke particles
- Level of PAHs are below 0.3% of total quantified OA (up to 5% in fresh smoke)
Biomass burning markers indicate fuels & SOA

Cluster 1: smoke from Atlas fire (hardwood)
Cluster 2: aged smoke from Sonoma County fires
Cluster 3: fresh smoke from Sonoma County fires (hardwood & softwood)

Primary BBOA markers

Secondary BBOA markers

- 4-nitrocatechol
- Methylnitrocatechols

Clusters shown:
- Cluster A
- Cluster B
- Cluster C
- Cluster D
- Cluster E

Concentration [µg m⁻³]

Solar radiation [W m⁻²]

Mass ratios

Concentration [µg m⁻³]
A unique daytime secondary BBOA factor

Multifunctional aliphatic acids

<table>
<thead>
<tr>
<th>Compound</th>
<th>Formula</th>
<th>11-Oct</th>
<th>12-Oct</th>
<th>13-Oct</th>
</tr>
</thead>
<tbody>
<tr>
<td>3,4-dihydroxybutanoic acid</td>
<td>C₅H₈O₄</td>
<td>13.3</td>
<td>13.9</td>
<td>20.3</td>
</tr>
<tr>
<td>citramalic acid</td>
<td>C₅H₆O₃</td>
<td>0.0</td>
<td>8.4</td>
<td>11.5</td>
</tr>
<tr>
<td>pimelic acid</td>
<td>C₇H₁₀O₄</td>
<td>26.8</td>
<td>26.0</td>
<td>26.0</td>
</tr>
<tr>
<td>2,2-bis(hydroxymethyl)propionic acid</td>
<td>C₅H₉O₄</td>
<td>17.5</td>
<td>32.8</td>
<td>16.9</td>
</tr>
<tr>
<td>malic acid</td>
<td>C₆H₈O₄</td>
<td>32.3</td>
<td>32.8</td>
<td>50.5</td>
</tr>
<tr>
<td>suberic acid</td>
<td>C₇H₁₀O₄</td>
<td>0.0</td>
<td>11.4</td>
<td>11.9</td>
</tr>
<tr>
<td>threonic acid</td>
<td>C₅H₈O₄</td>
<td>14.9</td>
<td>10.3</td>
<td>9.9</td>
</tr>
<tr>
<td>2,3,4-trihydroxybutyric acid</td>
<td>C₅H₈O₃</td>
<td>7.3</td>
<td>4.9</td>
<td>4.5</td>
</tr>
<tr>
<td>2,3-dimethylsuccinic acid</td>
<td>C₅H₈O₃</td>
<td>5.2</td>
<td>5.3</td>
<td>5.8</td>
</tr>
<tr>
<td>α-ketoglutaric acid</td>
<td>C₅H₈O₃</td>
<td>0.0</td>
<td>7.4</td>
<td>3.7</td>
</tr>
<tr>
<td>2-pentenedioic acid</td>
<td>C₅H₈O₃</td>
<td>5.7</td>
<td>2.8</td>
<td>3.1</td>
</tr>
<tr>
<td>maleic acid</td>
<td>C₅H₆O₄</td>
<td>0.0</td>
<td>6.5</td>
<td>6.3</td>
</tr>
<tr>
<td>pinic acid</td>
<td>C₅H₈O₄</td>
<td>12.7</td>
<td>8.2</td>
<td>10.3</td>
</tr>
<tr>
<td>2,3-dihydroxy-4-oxo pentanoic acid</td>
<td>C₅H₈O₃</td>
<td>2.2</td>
<td>5.9</td>
<td>9.3</td>
</tr>
<tr>
<td>3-methyl-1,2,3-butaneetricarboxylic acid (MBTCA)</td>
<td>C₁₀H₁₆O₄</td>
<td>2.6</td>
<td>0.0</td>
<td>2.4</td>
</tr>
</tbody>
</table>

Oxygenated aromatic compounds

<table>
<thead>
<tr>
<th>Compound</th>
<th>Formula</th>
<th>11-Oct</th>
<th>12-Oct</th>
<th>13-Oct</th>
</tr>
</thead>
<tbody>
<tr>
<td>4,7-dimethyl-1,3-isobenzofuranone</td>
<td>C₁₀H₁₃O₂</td>
<td>0.8</td>
<td>1.3</td>
<td>2.0</td>
</tr>
<tr>
<td>1-phenyl-1-penten-3-one</td>
<td>C₁₀H₁₂O</td>
<td>2.4</td>
<td>6.4</td>
<td>9.1</td>
</tr>
<tr>
<td>1,3-dihydroxyanthracene</td>
<td>C₁₄H₁₀O₂</td>
<td>6.3</td>
<td>3.3</td>
<td>3.3</td>
</tr>
<tr>
<td>protocatechic acid</td>
<td>C₇H₆O₄</td>
<td>43.5</td>
<td>25.3</td>
<td>35.2</td>
</tr>
<tr>
<td>phthnic acid</td>
<td>C₄H₆O₄</td>
<td>27.7</td>
<td>45.9</td>
<td>68.5</td>
</tr>
<tr>
<td>gallic acid</td>
<td>C₇H₆O₃</td>
<td>2.2</td>
<td>2.6</td>
<td>2.6</td>
</tr>
</tbody>
</table>
VOCs in wildfire smoke

- Over 70% of non-methane organic carbon in smoke was in VOCs
- VOCs in smoke may undergo photooxidation, producing harmful OVOCs, O$_3$ and SOA
Daytime oxidation produced oxygenated VOCs

\[\Delta NMOG = \left(\frac{\Delta X}{\Delta CH_3CN} \right)_{\text{day}} - \left(\frac{\Delta X}{\Delta CH_3CN} \right)_{\text{night}} \]

\[\Delta NMOG_{\text{fraction}} = \frac{\left(\frac{\Delta X}{\Delta CH_3CN} \right)_{\text{day}} - \left(\frac{\Delta X}{\Delta CH_3CN} \right)_{\text{night}}}{\left(\frac{\Delta X}{\Delta CH_3CN} \right)_{\text{night}}} \]

The daytime plume traveled ~ 7-8 hours to Berkeley.

The nighttime plume traveled ~ 2-3 hours to Berkeley.
Correlation with furan (primary) and maleic anhydride (secondary) reveals the source of VOCs

\[R^2 \text{ with maleic anhydride} \]

Aromatic nitrogen-containing
Benzenoid
Furanoid
Hydrocarbon
Aliphatic nitrogen-containing
Others
Aliphatic oxygenated
Sulfur-containing
Terpenoid

\[\text{furan/furfural + OH} \rightarrow \text{maleic anhydride} \]

lifetime of furan = 4.4 hours if [OH] = 1.5×10^6 molec cm\(^{-3}\)
Summary

• Sugars & sugar derivatives, mono-acids, aromatic compounds and terpenoids are the main components of BBOA particles.

• A group of multifunctional acids and oxygenated aromatic compounds were identified as potential daytime BB SOA tracers.

• There was substantial change of BBOA composition during transport under sunlight.

• Thanks for watching! We look forward to your questions, comments & suggestions!

Contact: Yutong Liang (yutong.liang@berkeley.edu), Allen Goldstein (ahg@berkeley.edu)