Trace gases and organic aerosol at a rural site in Vietnam during large scale biomass burning

Pieber SM¹, Nguyen DL²,³, Czech H²,³, Henne S¹, Bukowiecki N⁴, Nguyen NA⁵, Buchmann B¹, Emmenegger L¹, Steinbacher M¹

¹ Laboratory for Air Pollution and Environmental Technology at Empa, Switzerland (simone.pieber@empa.ch)
² University of Rostock, Germany & ³ Helmholtz Zentrum Munich, Germany
⁴ Basel University, Basel, Switzerland
⁵ HYMOC/VNMHA, Hanoi, Vietnam

- Biomass burning (BB): global phenomenon
- Emissions influenced by fuel/vegetation-type, fuel moisture, temperature, available oxygen, etc.
- Studies in different world regions needed
- We investigate influence of seasonally recurring BB at Pha Din in NW Vietnam (GAW station¹ since 2014)
 - air quality and aerosol chemical composition
 - greenhouse gas concentration
 - intense campaign in March-April 2015
 - long-term monitoring since 2014

Carbonaceous Aerosol Composition: March-April 2015 Case Study

Up to 4% of the OC was quantified as targeted markers, total of 51 compounds:\nPAHs, alkanes, fatty acids, anyhdro sugars, methoxyphenols, nitro-phenols

Hierarchical Clustering of OC components:\n
\[2\] Nguyen et al., Atmos. Chem. Phys. Disc., (2020) (in review) Special Issue on Wildfires
https://acp.copernicus.org/preprints/acp-2020-1027/
Trace Gases

Figure 5. Trace gases (2016-2019)

Figure 6. CO simulation and BB CO age during the March-April 2015 case study
THANKS FOR WATCHING

Acknowledgements:
Capacity Building and Twinning for Climate Observing Systems (CATCOS),
GAW Quality Assurance/Science Activity Centre Switzerland (QA/SAC-CH),
German Academic Exchange Service (DAAD),
Vietnam Academy of Science and Technology (VAST),
Atmosphere Open-Access Journal Travel Award 2020

Questions or Feedback?
SIMONE.PIEBER@EMPA.CH