Photoproduction of singlet oxygen from aqueous organic aerosols

Nadine Borduas-Dedekind, PhD
Swiss National Science Foundation Ambizione fellow
Institute for Biogeochemistry and Pollutant Dynamics
Institute for Atmospheric and Climate Sciences
ETH Zurich, Switzerland

@nadineborduas
#NBDGroup
Why do we care about reactive oxygen species (ROS)?

Importance of oxidants in atmospheric chemistry:
• Oxidative capacity of the atmosphere
• Fate of pollutants
• Aerosol-cloud interactions
4 ingredients necessary for the production of $^1\text{O}_2$

4 ingredients necessary for the production of $^{1}\text{O}_2$

Can $^{1}\text{O}_2$ also be formed in organic aerosols?

Research questions on $^1\text{O}_2$ in organic aerosols:

1. Is $^1\text{O}_2$ formed?

2. Does $^1\text{O}_2$ matter in the atmosphere?

Nadine Borduas-Dédekind, PhD
Swiss National Science Foundation Ambizione fellow
Institute for Biogeochemistry and Pollutant Dynamics
Institute for Atmospheric and Climate Sciences
ETH Zurich, Switzerland
Making secondary organic aerosols (SOA) in the lab

UVB lamps

5 m³ chamber with Teflon bag

H₂O₂ + hν \rightarrow 2 \text{OH}

toluene

diphenyl

naphthalene
dimethyl naphthalene

α-pinene + O₃ = control

Brown carbon

Prof. Sergey Nizkorodov

Kurtis Malecha
Quantifying $^{1}\text{O}_2$ steady-state concentrations

- **Experimental setup**

- **Data analysis**

Rate of disappearance:
\[
\ln\left(\frac{\text{[FFA]}_t}{\text{[FFA]}_0}\right) = -k \cdot [^{1}\text{O}_2]_{ss} \cdot \text{[furfuryl alcohol]}
\]

$[^{1}\text{O}_2]_{ss(aq)} = 2.0 - 6.8 \times 10^{-14}$ M

$[\text{OH}]_{ss(aq)} \sim 10^{-17}$ M
Steady state concentrations of $^{1}\text{O}_2$ are highly variable

$^{1}\text{O}_2$ production depends on:
1. Photons of light absorb
2. Concentration of chromophores

- Necessary to normalize \Rightarrow quantum yield values

$^{1}\text{O}_2$ quantum yield:
- In SOA: $\Phi^{1}\text{O}_2 = 0.029 \pm 0.009$
- In aquatic environments: $\Phi^{1}\text{O}_2 = 0.01-0.05$

[Diagram showing perinaphthenone quantum yield = 0.98 and SOA with furfuryl alcohol, showing liquid chromatography UV/Vis spectroscopy in aquatic environments.]
Research questions on $^1\text{O}_2$ in organic aerosols:

1. Is $^1\text{O}_2$ formed?
 - How much is formed?

 $[^1\text{O}_2]_{ss(aq)} = 2.0 - 6.8 \times 10^{-14} \text{ M}$
 $\Phi[^1\text{O}_2] = 0.029 \pm 0.009$

2. Does $^1\text{O}_2$ matter in the atmosphere?
 - Compared to other oxidants?
 - Present in ambient aerosols?
 - For the degradation of compounds within aerosols?
 - For aerosol-cloud interactions?
Quantum yields of ROS within lab-generated SOA

1O_2 is produced in high concentrations relative to other ROS

- 1O_2 quantum yields \gg H$_2$O$_2$ quantum yields (100x)
- 1O_2 quantum yields $\gg\gg$ OH radical quantum yields (1000x)
- α-pinene is not a sensitizer

Can 1O_2 also be formed in ambient organic aerosols?
Field collected particulate matter sensitize $^{1}\text{O}_2$

- In Roveredo, Switzerland
- November 17, 2017 & March 18, 2018

Both naphthalene and α-pinene SOA became better cloud condensation nuclei after UVB photooxidation.

Likely negligible role of 1O$_2$ in atmospheric aging for SOA.

Research questions on $^{1}\text{O}_2$ in organic aerosols:

1. Is $^{1}\text{O}_2$ formed?
 • How much is formed?
 \[[^{1}\text{O}_2]_{\text{ss(aq)}} = 2.0 \times 10^{-14} \text{ M} \]
 \[\Phi^{^{1}\text{O}_2} = 0.029 \pm 0.009 \]

2. Does $^{1}\text{O}_2$ matter in the atmosphere?
 • Compared to other oxidants?
 • Present in ambient aerosols?
 • For the degradation of compounds within aerosols?
 • For aerosol-cloud interactions?
 • For indoor air chemistry? Check out Sebastian Zala’s lightning talk!

It depends… … and still much to learn!
Summary: Relevance of 1O$_2$ as a reactive oxygen specie in organic aerosols