An odd oxygen framework for wintertime ammonium nitrate aerosol pollution in Salt Lake Valley

NO_x and VOC control as mitigation strategies

Carrie Womack // NOAA Earth System Research Lab and CIRES
Erin McDuffie, Pete Edwards, Ale Franchin, Ann Middlebrook, Munkh Baasandorj, Steve Brown

Utah Winter Fine Particulate Study (UWFPS) Team
Uintah Basin Winter Ozone Study (UBWOS) Team

Atmospheric Chemical Mechanisms Conference
19 November 2020
Wintertime PM$_{2.5}$ pollution persists in the US and elsewhere.

PM-2.5 Nonattainment Areas (2006 Standard)

Nonattainment areas are indicated by color.

When only a portion of a county is within a nonattainment area boundary, it is indicated by partial color filling.

PM-2.5 Classification
- Serious
- Moderate

Salt Lake Valley (SLV)
Cache Valley
Utah Valley

San Joaquin Valley (SJV)
South Coast Basin

Salt Lake City, USA

PM$_{2.5}$ (μg m$^{-3}$)

Day of Year

0 100 200 300

0 20 40 60 80
Salt Lake Valley pollution episodes occur during persistent cold air pools (PCAPs)

Typically more sensitive to these reductions

\[\text{HNO}_3 (g) + \text{NH}_3 (g) \leftrightarrow \text{NH}_4 \text{NO}_3 (aq) \]

In the SLV: \(\text{PM}_{2.5} = \text{Wintertime PM}_{2.5} \approx \text{Ammonium nitrate aerosol} = \text{HNO}_3(g) \)

Some of the questions driving Utah Winter Fine Particulate Study (UWFPS 2017)

- What are the chemical mechanisms that form HNO\(_3\) during PCAPs?
- What control strategies would be most effective for limiting HNO\(_3\) production? Is NO\(_x\) control the best strategy?
Utah Winter Fine Particulate Study (UWFPS)
January 16 – February 13, 2017

Logan (L4)
- NO\textsubscript{x}, O\textsubscript{3}, PM\textsubscript{2.5}, NH\textsubscript{3}, CH\textsubscript{4}, CO\textsubscript{2}
- I- CIMS (HONO, HNO\textsubscript{3}, ClNO\textsubscript{2}, N\textsubscript{2}O\textsubscript{5})
- AMS (pNO\textsubscript{3})

Twin Otter (TO)
- NO\textsubscript{x}, O\textsubscript{3}, NH\textsubscript{3}
- I- CIMS (HONO, HNO\textsubscript{3}, ClNO\textsubscript{2}, N\textsubscript{2}O\textsubscript{5})
- AMS (pNO\textsubscript{3})

University of Utah (UU) and Hawthorne (HW)
- NO\textsubscript{x}, O\textsubscript{3}, CO, PM\textsubscript{2.5}
- PTR-MS (aromatics, aldehydes)

Two major PCAPs observed.
Ammonium nitrate dominated PM\textsubscript{2.5}.
Ammonia was usually in excess.
2017 was a typical winter.
Traditional
\[O_x = O_3 + NO_2 \]
Parameter for daytime photochemical \(O_3 \) production

More general term
\[O_{x,\text{total}} = O_3 + NO_2 + 2*NO_3 + 3*N_2O_5 + ClNO_2 + 1.5*(HNO_3 + pNO_3^-) + PANs + ANs + OH + \ldots \]
Parameter for either photochemical \(O_3 \) or \(HNO_3 \) production

"HO\textsubscript{x}-NO\textsubscript{x} cycle"
"Nighttime N\textsubscript{2}O\textsubscript{5} chemistry"
During UWFPS we observed $O_{x,\text{total}}$ growth during the PCAPs – an indicator of photochemical activity.

During UBWOS… and here?

Inversion layer height
Salt Lake Valley
Population: ~1,000,000 (~800 people/km²)
Oil & natural gas wells: 0

Uintah Basin
Population: ~50,000 (~2 people/km²)
Oil & natural gas wells: ~10,000

1) Photochemistry is important even in the winter.
2) $O_{x,\text{total}}$ describes both O_3 (Uintah) and $p\text{NO}_3^-$ (SLV) pollution
DSMACC modeled the O₃ growth in Uintah basin – can a similar model described Oₓ,total in the SLV?

Initialize with observations

- First order loss parameter (entrainment of background air, deposition)
- MCM mechanisms for VOC chemistry
- TUV model for photochemistry

Emissions of NOx, VOCs, HONO, HCHO

Dynamically Simple Model of Atmospheric Chemical Complexity

An $O_{x,\text{total}}$ isopleth shows the NO$_x$-VOC sensitivity of the SLV

1) NO$_x$ production in the SLV is NO$_x$-saturated and VOC-limited

2) NO$_x$ reductions, in the absence of concurrent VOC reductions, will initially increase $O_{x,\text{total}}$ in the form of pNO$_3^-$ and O$_3$.

Womack et al., *GRL*, 46, 4971 (2019)
O₃ in Uintah and pNO₃⁻ in SLV can be explained by the HOₓ chain length

\[
\text{HO}_x \text{ chain length} = \frac{\sum \text{Propagation reactions}}{\sum \text{Termination reactions}}
\]

Uintah: High VOC/NOₓ propagates cycle, making O₃.

SLV: Low VOC/NOₓ quenches cycle, terminating in HNO₃.
Summary

- $O_{x,\text{total}}$ is a general parameter to describe both O_3 and HNO$_3$ production.
 - O_3 and pNO$_3^-$ pollution are closely linked, and are endpoints of the same chemical cycle
 - The NO$_x$-VOC sensitivity isopleths also apply to pNO$_3^-$.

- The SLV is both HNO$_3$-limited, but NO$_x$-saturated. NO$_x$ reductions alone will initially *increase* pNO$_3^-$ in the valley.

- This result may be a general worldwide phenomenon, as high NO$_x$ and limited radical sources are common in wintertime boundary layers.