

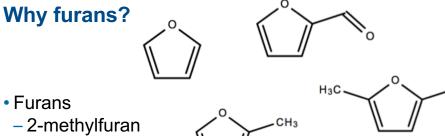
Incorporation of a Detailed Gas-Phase Furan Mechanism into a Young Biomass Burning Plume Box Model

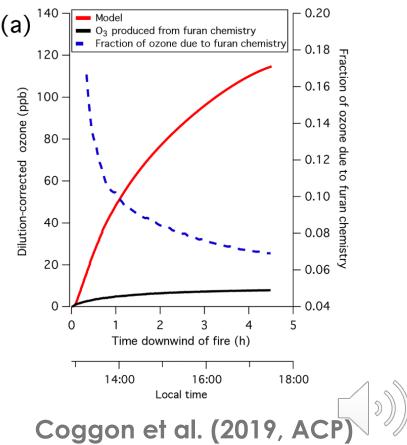
Thursday, November 12, 2020 Fundamental Oxidation Chemistry (Part 3) 8:00 a.m. – 11:15 a.m. PT

Benjamin Brown-Steiner, Matthew Alvarado (AER) Jia Jiang, Kelley Barsanti (UC Riverside)

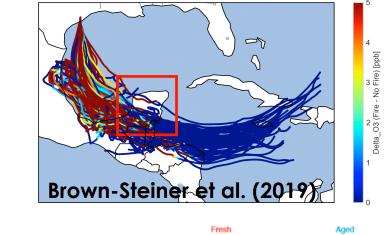
UCDAVIS

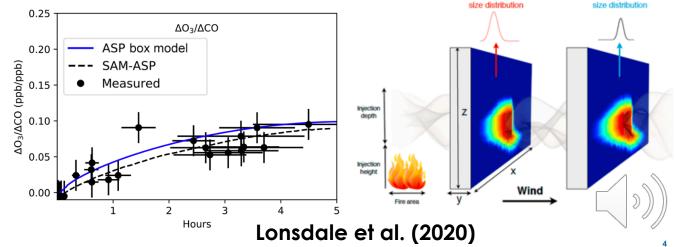
Atmospheric Chemical Mechanisms Conference


Virtual Conference November 9-20


Agenda

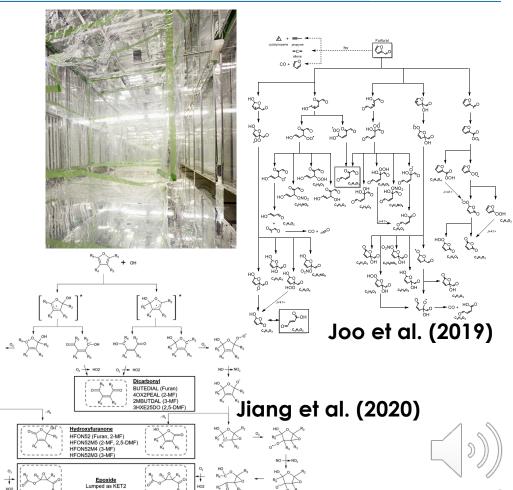
- •Why furans?
- •Why ASP?
- •Why SAPRC-18?
- Detailing the "Engine" Swap
- Initial*** Results
- Immediate Next Steps
- Eventual Next Steps




- 2-methylfuran
- 3-methylfuran
- 2,5-dimethylfuran
- Furfural (furaldehyde)
- Furans can contribute up to 10% of **O**₃ production from biomass burning especially in young smoke (e.g. Coggon et al. 2019),
- Furans also contribute to SOA formation, although SOA yields are variable and dependent on plume conditions and furan mixture (e.g. Joo et al., 2019)
- Their chemistry is **complex**
- -4-carbon 1-oxygen ring with 2 double bonds
- Reactive to OH, NO₃, O₃
- 100+ species (Jiang et al., 2020)

Why ASP?

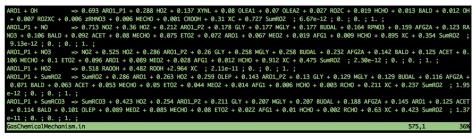
- Aerosol Simulation Program (ASP v2.1) (Alvarado and Prinn, 2009)
- Young (< 24 h) Biomass Burning Box Model
- ASCII formatted input files
- Flexible
 - Box Model (Smoke Plume or Smog Chamber)
 - Semi-Lagrangian (STILT-ASP)
 - 2D Lagrangian (SAM-ASP)
- Mechanism "Ancestry":
- CACM/RACM
- MCM



Why SAPRC?

- Current collaboration (NSF) with Nga Lee (Sally) Ng and Taekyu Joo at Georgia Tech to develop furan oxidation chemistry and SOA formation in smog chamber (Joo et al., 2019)
- 2-MF, 3-MF, 2,5-DMF, Furfural via OH, O_3 , NO_3
- Kelley Barsanti and Jia Jiang (UC Riverside) developed a detailed gas-phase mechanism for furan and major oxidation products (Jiang et al., 2020) in SAPRC (-18, -7/-11)
 ASP-SAPRC!
- Since ASP doesn't have SAPRC ancestry, dropping in Jia's SAPRC-18 furan mechanism would be a "fresh" start
- **SPOILER**: We're dropping in all of SAPRC-18, not just the furan mechanism

How to Swap Engines (Chemical Mechanisms)


- Branch a new version of ASP
- Start Deleting Things...But Not Everything! – Parts of ASP code expect certain species
- -Easier (at this point) to leave them in the mechanism, but not allow them to do anything.
- -Code changes would be undesirable
- Reformat SAPRC-18 mechanism to fit into ASP
- -Jia Jiang was the primary mechanic here
- "Drop" SAPRC-18 into the ASP Chassis
 Ctrl+V

Oh No What Have We Done

- Glance around at shop floor and see:
- Duplicate Species?
- Different forms of RO2 and RCO3 tracking
- Tracer Species
- HV? FALLOFF? N-C6F14?
- 1,500 lines of "Matrix" Style numbers and letters

- Photolysis reactions which are conceptually similar but differing in formats and details
- Code that will except MWs, BCs, ICs for hundreds of new species

Square Pegs and Round Holes

- Photolysis
- SAPRC
- ASP
- ASP cannot handle product-less reactions
 Use H2O
- Typos and Tweaks
- Need to convert "E" to "e" for ASP formatting
- Strange decimal places...
- A number of reactions didn't seem to convert the reaction rates cleanly from the SAPRC format
 - Temporary solution: comment them out

Photolysis Mapping

- COOH (MEOOH, ETOOH, RUOOH, RAOOH, ROOH, RPNO3) CH3OOH (31)
- HCHOR-13 (HCHO) HCHO (17, 18)
- HCHOM-13 (<u>HCHO</u>) HCHO (17, 18)
- CCHOR-13 (MECHO) Acetaldehyde (19)
- C2CHO (ETCHO, RCHO, RTCHO) {saturated aldehydes} ALD as Butanal (49)
- GLALD-14 (GLCHO) HOCH2CHO (23)
- PAA (PAA) CH3CO3H (31)
- GLY-I13R (GLY) GLY (44,45)
- GLY-I13M (GLY) GLY (44,45)
- ACET-06 (ACET) Acetone (26)
- MGLY-13 (MGLY) MGLY (46)
- BACL-11 (BACL) BIACET (47)
- BALD-11 (BALD) BALD (25)
- NO2-06 (NPHE) {nitrophenols} PAN (40, 41)
- PAN-11 (PAN) PAN (40, 41)
- PPN-11 (HOPAN, PPN, PAN2, PAN2N, PBZN, APAN, MAPAN) PPN (42, 43)
- ACROL-16 (ACRO) ACR (24)
- MEK-06 (<u>MEK</u>, KET2) <u>MEK (28)</u>
- MACR-06 (<u>MACR</u>, OLEA1) MCR (25)
- MVK-16 (<u>MVK, LVKS</u>) MVK (27)
- AFGS (BUDAL, AFG1, AFG2A, AFG2B) (aldehydes and ketones) UALD and MCR (25)
- IC30N02 (RAN03, RHN03, R1N03, R2N03) NOA (38)
- <u>CRBNIT</u> (RCNO3) {volatile organic <u>carbonyl</u> nitrates} <u>NOA</u> (38)
- DIONO2 (RDNO3) {dinitrates} NOA (38)
- HPALDS (HPALD, CROOH) {unsat. hydroperoxy carbonyls} peroxides as CH3OOH (31)

Turning the Key

• Errors

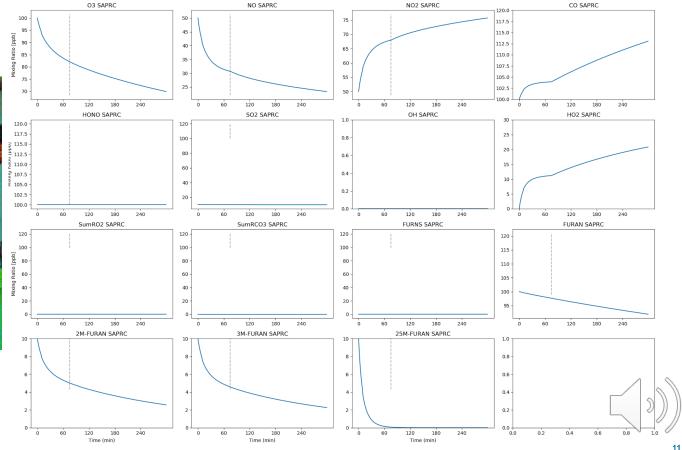
- Incorrect Number of Rate Terms
- Where's the H2O?

• Then:

Total Execution Time was 35.718

Success!


• But do we trust it...?



Very Preliminary Results

Proprietary Material -- Atmospheric and Environmental Research, Inc

Immediate Next Steps

Table 4. List of the Chamber Experiments Used to Evaluate the Model Performance

						initial mixing ratio (ppb)			
Poplicato Chambor	group	run ID	light	duration (min)	RH (%) ^f	NO	NO ₂	furans	ethylene
 Replicate Chamber Experiments from Jiang et al. 	furan-1	ITC711	BL^{a}	285	50	367	144	423	
		ITC713	BL ^a	360	50	769	206	406	
		ITC715	BL ^a	360	50	391	98	225	
(2020)		ITC743	BL^{a}	375	50	420	120	389	
	furan-2	EPA355A	Arc ^b	312	dry	101	7	40	
		EPA355B	Arc ^b	312	dry	26	$\sim 0^{g}$	41	
 Address commented out 		EPA371A	BL^{c}	314	dry	90	7	37	
reactions		EPA371B	BL^{c}	314	dry	27	1	38	
reactions	furan-3	EPA1402A	BL^d	288	dry	3	10	129	1102
		EPA1403A	BL^d	289	dry	~ 0	13	47	981
		EPA1403B	BL^d	289	dry	~ 0	14	50	1056
 Update/Address Photolysis 		EPA1448A	BL^d	469	dry	15	$\sim 0^g$	130	878
	2-MF	EPA356A	Arc ^b	321	dry	100	$\sim 0^g$	51	
		EPA356B	Arc ^b	321	dry	31	2	51	
 Full audit of gas chemistry 		EPA996A	BL^{e}	509	dry	40	1	50	
		EPA996B	BL^e	473	dry	40	1	50	
		EPA999A	BL^e	479	dry	52	$\sim 0^g$	600	
 Connect to SOA 		EPA999B	BL^{e}	479	dry	50	$\sim 0^g$	293	
	3-MF	EPA358A	Arc ^b	340	dry	93	7	62	
		EPA358B	Arc ^b	340	dry	28	2	65	
		EPA359A	BL^{c}	308	dry	96	4	55	
		EPA359B	BL^{c}	308	dry	28	2	55	
		EPA418A	Arc ^b	362	dry	104	7	48	
		EPA418B	Arc ^b	362	dry	26	2	49	
	2,5-DMF	EPA357A	Arc ^b	294	dry	96	3	47	
		EPA357B	Arc ^b	294	dry	22	1	50	1

^{*a*}Blacklight, light intensity k_1 (NO₂ photolysis rate as measured by actinometry) = 0.35 min⁻¹. ^{*b*}Argon arc light, $k_1 = 0.26 min^{-1}$. ^{*c*}Blacklight, $k_1 = 0.163 min^{-1}$. ^{*d*}Blacklight, $k_1 = 0.401 min^{-1}$. ^{*b*}Blacklight, $k_1 = 0.131 min^{-1}$. ^{*f*}Dry condition, RH < 0.1%. ^{*s*}below the detection limit (less the second secon

 $k_1 = b$

Eventual Next Steps

- Finalize the SAPRC-ASP Box Model
- Add furfural chemistry of Joo et al.
- Simulate Georgia Tech chamber experiments
- STILT-SAPRC-ASP?
- SAM-SAPRC-ASP?

A Note

- · Between "now" and "now" we'll have more results
- Please reach out!
- -bbrownst@aer.com
- -@benbrownsteiner

