

Atmospheric Chemical Mechanisms Conference

Chemistry of Reactive Organic Gases in Mega-cities of China: Insights from Vertical Gradient and Eddy Covariance Flux Measurements

Bin Yuan

Institute for Environmental and Climate Research Jinan University

2022-12-7

Urban is one of the main components of ecosystem

- **Urban ecosystem is the highest form of human settlement**
- I High energy use + Intensive human activities=Large GHG & air pollutant emission

Urban flux study enhances the knowledge of emission and environmental impact

Significant "new" emissions of reactive organics in urban region

Urban oxygenated VOCs emission was significantly underestimated

"New" emissions of reactive organic gases affect air quality

Flux and gradient measurements in urban of Beijing

Long tubing assessment for gas measurements

Negligible loss for most gas species, except for very reactive ones (NO, monoterpenes) in the daytime

Vertical gradients of ozone and precursors are significant

- **Strong gradient were observed at night**
- Air pollutants are generally well mixed during the daytime

Reactive species decline more rapidly with height

Stronger gradient is observed for more reactive species

OVOC are more important in aloft atmosphere

LT 11:00-16:00

MOHR: Mean OHR between 5-320 m

- Contributions of reactive VOCs to the total concentration and OHR rapidly decline with height
- **OVOCs** account for larger fractions in OHR in higher altitudes Ш

Vertical distributions of ozone formation sensitivity

- **Ozone formation exhibits insignificant vertical discrepancy in the lower BL**
- **Ozone formation is more sensitive to changes in AVOC and OVOC in higher altitudes**

Strong aloft photochemical formation of ozone

Ozone production rates decline with height but is still large in aloft
OH concentrations increase with height

Vertical gradient indicates NOx-dependence of oxidation capacity

□ The tuning points of oxidation capacity decrease with height.

□ Significant fraction of time for chemistry is in the low-NOx regime for urban Beijing

VOCs fluxes and concentrations: different diurnal variations

VOCs fluxes were higher in the day and lower at night, decoupling with boundary layer

VOCs fluxes and concentrations: different compositions

VOCs fluxes (fresh emission)

OVOCs dominated VOCs fluxes (77%)

N/S-containing

N/S-containing

Evolution from fluxes to concentrations

Generated

Chemical

process

Consumed

Flux

Hydrocarbons

 $C_{V}H_{V}O_{>3}$ $C_{V}H_{V}O_{2}$ $C_{V}H_{V}O$ $C_{V}H_{V}$

Concentration

OVOCs

Source apportionment of VOCs based on flux data

Urban VOCs source structure has changed quietly

Flux-based PMF analysis revealed current VOCs source structure

Volatile chemical products (VCPs) dominate VOCs emission in urban Beijing

Validation of key VOCs concentration in the model

Add new VOCs species and their mechanisms

Update VOCs emission inventory

ऻ₡₦ን₴መ₢ቀወነ₡₦ን₴መ₢ቀወነ₡₦ን ИФФФንテテテテテテ

Inventory update improved O₃ simulation performance

Update anthropogenic emission inventory in the regional air quality model

Summary

- Reactive species are consumed rapidly with the increase of height
- OVOCs play more important roles in sustaining atmospheric oxidation capacity aloft
- Source analysis of VOCs based on flux data provides new insights into VOCs emissions
- Regional air quality simulation can be improved with measured VOC flux information

Xiaobing Li

Yibo Huangfu

Xianjun He

Thank you for your time !

Bin Yuan

Institute for Environmental and Climate Research, Jinan University byuan@jnu.edu.cn