Makoto Kelp ACM Conference 20221208

An Online-Learned Neural Network Chemical **Solver for Stable Long-Term Global Simulations of Atmospheric Chemistry**

Scientific advancements outpace computational progress

Year

Schneider et al., 2017 Nature Climate Change

Global modeling of atmospheric chemistry is a grand computational challenge

Bottom Line: Adding chemistry into an Earth system model becomes computationally infeasible

768

-Weather and climate models typically have ~4 variables

-Chemistry models have hundreds of evolving species

Eastham et al., 2018 GMD

Machine learning (ML) methods can provide a solution to this problem

- 1. Nonparametric, universal function approximators
- 2. Learn to predict based on large dataset of repeated patterns
- 3. Proven to speed up solving ODEs at orders of magnitude (Malek and Shekari, 2006)

s **ted** patterns hagnitude (Malek and Shekari, 2006)

Application of machine learning to chemical solvers

Chemical calculation is expensive

Highly repetitive

Fully deterministic

Why not

High dimensionality

Lack physics constraints

Error growth

The 'Super Fast' chemical mechanism will allow us to better define ML methods and understand limitations in a full 3-D global modeling framework

Kelp et al., 2022

We train ML solvers online synchronously with a GEOS-Chem simulation to train on representative conditions in sequence **GEOS-Chem**

Online learning prevents overfitting to training data

Offline (batch) learning

Pros:

Simple to code Fast, easy to train + manipulate data (recursive train)

Cons:

Overfitting (overly reliant on training data) Generate massive data archives Under/oversample chemical environments

Online learning prevents overfitting to training data

Offline (batch) learning

Pros:

Simple to code Fast, easy to train + manipulate data (recursive train)

Cons:

Overfitting (overly reliant on training data) Generate massive data archives Under/oversample chemical environments

Online (sequential) learning

Cons:

Hard to implement Very expensive training! (Each GC time step) Limited observational window "Catastrophic forgetting problem" [McCloskey and Cohen, 1989]

Online training improves accuracy and stability over offline training

Offline t to t+1

Absolute Error (ppb)

Ozone

Offline 24h recursive

Online

Kelp et al., 2022

Simulation are stable and average errors for the year are <10%, but ML solvers have different seasonal fits of accuracy

Separate ML solvers for:

Errors are largest at remote latitudes and high altitudes due to chemical error accumulation as air ages

Kelp et al., 2022

Takeaways

- -Application of ML chemical solver in global 3-D atmospheric chemistry models may require online training.
- -Stable year-long global simulation of chemistry can be achieved with a ML solver applied to the Super-Fast mechanism in GEOS-Chem.
- -Computational speedup is five-fold relative to the reference Rosenbrock solver in GEOS-Chem.
- -Large regional biases for ozone and NO_x under remote conditions where chemical aging leads to error accumulation.
 - -Regional biases remain a major limitation for practical application, and ML emulation would be more difficult in a more complex mechanism.

home about me research

Makoto Kelp

What does this mean for ML and CTMs? Promising

Compression

Anomaly detection

Parametrization

Silva et al. 2022

Dataset curation

Aufiero and Janson, 2022 (arXiv)

Pendergrass et al., 2022

What does this mean for ML and CTMs? Not so promising?

Chemical Solvers

- -Physical constraints don't help?
- Ground truth is a ODE solver not bulk statistics
- -Demand for specificity/accuracy incredibly high:
 - -'Eye test' won't pass
- -Too early to see if 'drop-in' CTM ML components useful

Data Assimilation

- -DA with ML redundant
- -DA and adjoint modeling is basically gradient descent (already been around for a long time with efficient architectures)
- -DA also better at ingesting sparse and noisy data as opposed to a lot of ML DA applications

