Reconciling Disparate Mechanisms for Oxidation of Hg(0) to Hg(II) in the Gas Phase

Theodore S. Dibble tsdibble@esf.edu

ESF
State University of New York
College of Environmental Science and Forestry

December 7, 2022
Atmospheric Chemical Mechanisms Conference

DOI: 10.1021/acs.jpca.2c04364
Acknowledgements

NSF Atmospheric Sciences

NSF Chemistry

Matt Zelie (B.S. 2013)
Yuge Jiao (Ph.D. 2017)
Curtis Wilhelmsen (B.S. 2018)
Abraham Schwid (B.S. 2018)
Hanna Tetu (B.S. 2019)
Khoa T. Lam (M.S. 2019)
Ilene Kirby (B.S. 2021)
Camille Beckett (B.S. 2021)
Dr. Pedro J. Castro (2021-now)
Darshi H. T. Edirappulige

Huiting Mao (ESF)
Daniel Jacob, Hannah Horowitz, Colin Thackray, & Viral Shah (Harvard)
Chuji Wang & Rongrong Wu (Mississippi State)
Florent Louis, Dorra Khiri, & Sonia Taamalli (Lille)
Ivan Černušák, Michal Pitoňák, & Vladimir Kello (Comenius U.)
Mostly Hg(0) Emitted but Much Hg(II) Deposited

Gas-phase redox affects how readily Hg enters food chain

\[[\text{Hg (g)}] \approx 2 \text{ ng/meter}^3 \]
\[= 0.2 \text{ pptv} \]
\[= 5 \times 10^6 \text{ atoms cm}^{-3} \]

Fish: up to \(~1 \mu g/g (5 \mu M)\)
EPA blood Ref Dose: 29 nM
Rain: \(~50 \text{ pM}\)
Ocean: \(~1 \text{ pM}\)
Hg Health Effects and Sources

Neurotoxin
- Hatter’s shakes
- Minimata Disease (1953-now)
- Fetal damage

Major Sources
- Gold refining
- Combustion

EPA/DAI KUROKAWA
Competing Mechanisms for Hg(0) to Hg(II)

One-Step by OH and Ozone
(CMAQ-Hg)

- \[\text{Hg} + \text{O}_3 \rightarrow \text{HgO} + \text{O}_2 \quad \Delta H^\circ = +20 \text{ kcal/mole} \]
- \[\text{HO} + \text{Hg} \rightarrow \text{HOHg} \rightarrow \text{HgO} + \text{HO}_2 \quad \Delta H^\circ = -11 \text{ kcal/mole} \]

Two-Step (by Br, Cl, and OH)
(GEOS-Chem)

\[\text{X}^\bullet + \text{Hg} \leftrightarrow \text{XHg}^\bullet \rightarrow \text{XHgY} \]

- \(\text{X}^\bullet = \text{Br, Cl, OH} \)
- \(\text{•Y} = \text{NO}_2, \text{HO}O, \text{ROO}, \text{BrO}, \ldots \)

From computations (& flash photolysis LIF experiments)

Can’t explain observations in continental boundary layer.

!!! \[\text{HgO (g)} \rightarrow \text{Hg} + \text{O} \quad \Delta H^\circ = +4 \text{ kcal/mol} \]
Two-Step Oxidation by Br versus OH

\[\text{X}^- + \text{Hg} \rightarrow \text{XHg}^- \rightarrow \text{XHgY} \quad \text{X}^- = \text{Br, Cl, OH} \]

\[\cdot \text{Y} = \text{NO}_2, \text{HOO, ROO, BrO, ...} \]

\[\text{Br} + \text{Hg} \rightarrow \text{BrHg}^- \rightarrow \text{BrHgY} \quad \sim 90\% \]

\[\text{OH} + \text{Hg} \rightarrow \text{HOHg}^- \rightarrow \text{HOHgY} \quad < 5\% \]

\[\text{Lab} [\cdot \text{Y}] \]

\[\text{Tropospheric} [\cdot \text{Y}] \]

\[\text{HOHgY} \quad \sim 100\% \]

Dibble et al. *JPC A* (2020)
Effects of $\text{HOHg}^\bullet + \text{O}_3$

$\text{HOHg}^\bullet + \text{O}_3 \rightarrow \text{HOHgO}^\bullet + \text{O}_2$

$[\text{O}_3] >> [\text{NO}_2]$ or $\Sigma[\bullet Y]$ if $k(\text{HOHg}^\bullet + \text{O}_3)$ high:

$\text{HOHg}^\bullet \rightarrow \text{Hg(II)}$ efficient

HOHgO^\bullet chemistry:

D.T.H. Edirappulige et al. ms in preparation:
No Barrier in Pot. Energy

Oxidation of HOHg by O3

Effective Core Potential for Hg and Br and aug-cc-pVTZ for other.

Barrier in $G(T) \Rightarrow k(T)$

Gibbs En. Pot. En.
Rate Constant for BrHg + O\textsubscript{3}

\[k(\text{BrHg} + \text{O}_3) \text{ from Gomez Martin et al. } \textit{PCCP} \text{ 2022} \]

DFT: CAM-B3LYP-D3BJ

CCSD(T): Energies with DFT data on the reaction path

Graph showing rate constants for BrHg + O\textsubscript{3} as a function of temperature (K) with rate constants at different temperatures (x10^11 cm3 molecule-1 s-1).
Rate Constants for BrHg + O$_3$ and HOHg + O$_3$

We recommend k(exp) for HOHg, also.

k(BrHg + O$_3$) from Gomez Martin et al. //PCCP 2022

DFT: CAM-B3LYP-D3BJ
CCSD(T): Energies with DFT data on the reaction path
Together, OH and Ozone Oxidize Hg(0)

Profiles from CMAQ, 39° N for Eastern United States.

\[k(\text{HOHg}^\bullet + \text{O}_3) = 7.5 \times 10^{-11} \text{ cm}^3 \text{ molecule}^{-1} \text{ sec}^{-1} \]

One latitude in Eastern US

With ozone, two step oxidation initiated by OH is efficient.
Together, OH and Ozone Oxidize Hg(0)

Globally

OH \sim 30\% (vs. <1\%) of trop Hg(0) oxidation

$k(\text{HOHg}^\bullet + \text{O}_3) = 3.0 \times 10^{-11} \text{ cm}^3 \text{ molecule}^{-1} \text{ sec}^{-1}$

$= 40\%$ of observed $k(295 \text{ K})$

Conclusions

O_3 efficiently oxidizes $HOHg\cdot$ (and $BrHg$) to $Hg(II)$

OH and ozone, **together**, convert $Hg(0)$ to $Hg(II)$

Globally: OH-initiation $\sim50\%$ of gross oxidation

Future Directions

Refine $k(HOHg\cdot + O_3)$ and fate of $XHgO\cdot$

Photolysis of $Hg(OH)_2$

Chemistry in/on aerosol

Thank you for your attention!!
Can Other Radicals Initiate Hg(0) Oxidation?

Do other radicals bond strongly to Hg?

F and Cl react with everything else, so [F] and [Cl] too low to remove Hg(0). Bonds to Hg(0) break before reaction with anything else.
Mechanism

Br + Hg + M → hv

BrHg• + M → BrHgOOH

NO₂ → hv

BrHgONO → hv

CO

hn

NO

BrHgO•

Rh

BrHgOH

BrHgONO₂

HOO• → BrHgOOH

O₃ → hv
Mechanism with OH

\[\text{OH} + \text{Hg} + \text{M} \]

\[\text{HOHg}^- + \text{M} \]

\[\text{NO}_2 \]

\[\text{CO} \]

\[\text{HOHgONO} \]

\[\text{HOHgO}^- \]

\[\text{RH} \]

\[\text{Hg(OH)}_2 \]

\[\text{HOHgONO}_2 \]

\[\text{hv} \]

\[\text{O}_3 \]
Why not Ozone-Initiated Oxidation of GEM?

Experiments: \(k = 3-80 \times 10^{-20} \text{ cm}^3 \text{ molecule}^{-1} \text{ s}^{-1} \)

One-Step mechanism: \(\text{Hg} + \text{O}_3 \rightarrow \text{HgO} + \text{O}_2 \)

Subsequently learned Hg-O bond \(~4\text{ kcal/mole}\)

1) \(\Delta H^\circ \) too + for reported \(k \) to reflect this mechanism

2) \(\text{HgO} \rightarrow \text{Hg} + \text{O} \text{ fast} \Rightarrow \text{GEM would not be removed?!} \)

Explanation? \(\Rightarrow \) surface reactions/catalysis