A Better Representation of VOC chemistry from VCP and Cooking emissions in WRF-Chem

Qindan Zhu,
CIRES, NOAA CSL; Now at MIT, NOAA C&GC postdoc fellow

Rebecca Schwantes, Brian McDonald, Matthew Coggon, Colin Harkins, Jian He, Meng Li, Eva Y. Pfannerstill, Clara M. Nussbaumer, Paul Wooldridge, Benjamin, C. Schulze, Caleb Arata, Anthony Bucholtz, John H. Seinfeld, Allen H. Goldstein, Ron C. Cohen
Development of RACM2B_VCP chemical mechanisms

RACM2_Berkeley2.0:
RACM2 with more complex representation of organic nitrates especially for biogenics VOCs (Goliff et al., 2013; Browne et al., 2014; Zare et al., 2018)

- **Add VCP VOC chemistry:**
 isopropanol, propylene glycol, and glycerol (Coggon et al., 2021)

- **Photolysis:**
 Incorporate new photolysis scheme (new TUV, opt=4)
 Add the boundary layer clouds and ingest the full 3D GFS O3

- **Aerosol scheme:**
 Couple the updated SOA scheme in RACM_ESRL_VCP (Ahmadov et al., 2012)

- **Aerosol uptake:**
 added aerosol uptake of inorganic species and revised aerosol uptake of organic nitrates

- **Add new emission tracers:**
 Added VCP and cooking tracers to the chemistry to fully evaluate the emissions
Representation of VCP and Cooking emission tracers in WRF-Chem

Gkatzelis et al., 2021

<table>
<thead>
<tr>
<th>Species</th>
<th>D4-Siloxane, D5-Siloxane, PCBTF, PDCBZ</th>
<th>Nonanal, Octanal, CALD (saturated aldehydes from cooking), CUALD (unsaturated aldehydes from cooking)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Reactions</td>
<td>OH (D4-siloxane: 1.3e-12, D5-siloxane, 2.1e-12, PCBTF: 2.4e-13, PDCBZ: 3.2e-13)</td>
<td>OH, NO₃, photolysis O₃ reactions with CALD and CUALD Atkinson and Arey 2003; Jenkin et al., 2018</td>
</tr>
<tr>
<td>Emissions</td>
<td>Coggon et al., 2021 + re-speciation</td>
<td>Coggon et al., in prep, based on obs from SUNVEX</td>
</tr>
</tbody>
</table>
Evaluation of WRF-Chem simulated VOC chemistry using RECAP and SUNVEX measurements

June 2021 NPS Twin Otter airborne measurements (RECAP)

August 2021 CSL Mobile Laboratory (SUNVEX)

We categorize the flight/mobile tracks into four regions: **Downtown LA, San Bernadino Valley, Santa Anna Valley, Coastal LA.**
Evaluation of WRF-Chem simulated VCP tracers

- WRF-Chem reproduces the observed range of D5-siloxane and PCBTF from both RECAP and SUNVEX measurements.
Evaluation of WRF-Chem simulated cooking emission tracers

RECAP
• Nonanal (NALD) and octanal (OALD) is added to the WRF-Chem as cooking emission tracers.
• The good agreement of nonanal and octanal between model and observations validate the cooking emissions in the current emission inventories.

SUNVEX
Evaluation of VOC reactivity in WRF-Chem by comparing against RECAP

Aromatics: benzene, toluene, xylene
VCP tracer: D5SILX, D4SILX, PCBTF, PDCBZ
Cooking tracer: CALD, CUALD, NALD, OALD
Evaluation of VOC reactivity in WRF-Chem by comparing against RECAP

64% of VOC reactivity attributes to species that are measured and calibrated during RECAP.

WRF-chem is 32% lower in calibrated VOC reactivity compared to RECAP.
Evaluation of VOC reactivity in WRF-Chem by comparing against RECAP

Ethanol and monoterpenes are two dominant VOCs contributing to the low bias in VOC reactivity.
Evaluation of WRF-Chem simulated O₃ using AQS surface network

Observed MDA8 O₃ map from AQS

![Map showing observed MDA8 O₃ levels across LA with color-coded areas for different scales.]

- Micro: 0m – 100m;
- Middle: 100m – 500 m;
- Neighbor: 500m – 4km;
- Urban: 4km – 50 km

WRF-Chem reproduces AQS observed surface O₃ over LA except two sites representing microscales.
Investigate the impact of VCP and cooking emissions on VOC reactivity and O$_3$

Besides the model run with full VOC emissions (#0), we conducted two sensitivity test runs:
#1 Emissions without cooking emissions;
#2 Emission without cooking + VCP emissions

We define
Cooking emission impacts: simulation #0 – simulation #1
VCP emission impacts: simulation #1 – simulation #2
Investigate the impact of VCP and cooking emissions on total VOC reactivity

VOC reactivity is sampled along RECAP flight tracks. Cooking and VCP emission contribute to 12% and 22% of the VOC reactivity, respectively.
Investigate the impact of VCP and cooking emissions on O$_3$

Changes in MDA8 O$_3$ due to cooking emission

Changes in MDA8 O$_3$ due to VCP emission

surface MDA8 O$_3$ from WRF-Chem
Conclusion

- VOC chemistry and ozone are well presented in WRF-Chem using a new developed RACM2_BERK_VCP_SILX_NALD chemical mechanism in this study.
- WRF-Chem still has a low bias in VOC reactivity, predominantly due to the underestimate in ethanol and monoterpene.
- We conducted sensitivity tests to investigate the impacts of cooking and VCP emissions on VOC reactivity and MDA8 ozone over LA.

Future work

- Finish WRF-Chem model runs at finer 4 km horizontal resolution.
- Expand sensitivity tests to biogenic and anthropogenic VOC emissions.
- Tackle the issue of low bias in monoterpene and ethanol

Acknowledgement

We acknowledge the RECAP-CA and SUNVEx science teams for collecting observations critical for model evaluation and funding sources from the EPA-STAR program, Grant # 84001001 and NSF-AGS, Grant # 2041981