

UNIVERSITY OF CAMBRIDGE

Department of Chemistry

Assessing and improving the DMS oxidation mechanism in the MCM and CRI-Strat

Lorrie Jacob 2nd Year PhD Candidate Supervisors: Alex Archibald and Chiara Giorio

Once in the atmosphere, DMS chemistry gets interesting

Closer to the poles, MSA can be deposited on SO₄²⁻ ice MSIA MSA

CRI-Strat and MCM are both useful, but have different uses

Master Chemical Mechanism (MCM):

- 17,000 reactions
- 81 sulfur-based reactions
- Good for simple models: box models

Common Representative Intermediates (CRI):

- 1183 reactions
- 38 sulfur-based reactions
- Good for more complicated models: global atmospheric models

Comparing the mechanisms to experiments: Arsene *et al.*

Experimental Conditions: DMS conc.: 6.5 ppm H_2O_2 conc.: 25 ppm NO_2 conc.: 350-500 ppb NO conc.: 900-1100 ppb Bath gas: synth. air Total pressure: 1000 mbar

Arsene, C.; Barnes, I.; Becker, K. H.; Mocanu, R. Atmos. Environ. 2001, 35, 3769-3780.

The MCM includes an additional reaction, forming DMSO2

Adding a few reactions made a big difference to the output

CRI-Strat: DMS + OH = DMSO + HO_2

CRI-Strat Updated: $DMS + OH = HODMSO_2$ $HODMSO_2 = DMSO + HO_2$ $HODMSO_2 + NO = DMSO_2 + HO_2 + NO_2$

Arsene, C.; Barnes, I.; Becker, K. H.; Mocanu, R. Atmos. Environ. 2001, 35, 3769-3780.

Albu et al: NO free experiment, still sees DMSO2

Experimental Conditions:

Temp: 290 K DMS conc.: 15 ppm H_2O_2 conc.: 25 ppm Bath gas: synth. air Total pressure: 1000 mbar

RI

Albu, M.; Barnes, I.; Becker, K. H.; Patroescu-Klotz, I.; Benter, T.; Mocanu, R. In Simulation and Assessment of Chemical Processes in a Multiphase Environment, Barnes, I., Kharytonov, M. M., Eds.; Springer Science: Dortdrecht, 2008, pp 501-513.

Arsene et al.MSADMSO2···· MCMSO2MSPN- CRI-StratDMSO

Comparing the mechanisms to experiments: Arsene *et al.*

Experimental Conditions: DMS conc.: 6.5 ppm H_2O_2 conc.: 25 ppm NO_2 conc.: 350-500 ppb NO conc.: 900-1100 ppb Bath gas: synth. air Total pressure: 1000 mbar

The differences in SO₂ formation can be explained by the reactions

The MCM assumes sulfur chemistry is similar to RC(O)OH

Reaction documentation for

Reaction of degradation products: RC(O)OH

In the case of SO2, one reaction is key:

MCM: MSIA + OH = $CH_3O_2 + SO_2$

MCM Updated: MSIA + OH = CH_3SO_2

MCM Updated 284 K Arsene et al. 295 K •••• MCM 50 Molar yields (%S) 10 0 10 20 25 5 15 0 Time (min)

Acknowledgement

S

Prof. Alex Archibald Dr. Chiara Giorio

Department of Chemistry

CAMBRIDGE TRUST

Talk about the state of what's in the models

- currently they are all over the place
- can we constrain the models by going back to older experiments
- compare Ben's study, showing a more qualitative evaluation (which is what is generally done on a global scale), to this, which is more of a quantitative assessment

The modelling of DMS oxidation is only as good as our knowledge of the chemistry

Aim: To improve the modelling of DMS oxidation chemistry

Objectives:

- Assess the current uncertainties in the DMS oxidation pathway using box modelling
- 2. Perform fieldwork that can be compared to the atmospheric models
- 3. Assess the use of MSA as an ice core proxy using global atmospheric models

CRI-Strat: DMS + OH = DMSO + HO2

CRI-Strat Updated: DMS + OH = HODMSO2 HODMSO2 = DMSO + HO2 HODMSO2 + NO = DMSO2 + HO2 + NO2

One study that this relies on had 100% formation of SO2, however, that was done in the oxygen free experiment. In a bath gas of neat N2, the formation of CH3SO2 solely forms the above (CH3 + SO2) though with oxygen (or O3 and NO2) other products could be found

								MCM	CRI Strat
8	CH3SO2	+	03	=	CH3SO3			3.00D-13	3.0D-13
9	CH3SO2			Π	CH3O2	+	SO2	5.00D+13*EXP(-9673/TEMP)	5.00D13*EXP(-9673/TEMP)
10	CH3SO2	+	O 2	Π	CH3SO2O2			1.03D-16*EXP(1580/TEMP)*O2	
11	CH3SO2	+	NO2	=	CH3SO3	+	NO		2.2D-12

Comparing the mechanisms to experiments: Albu et al.

Albu, M.; Barnes, I.; Becker, K. H.; Patroescu-Klotz, I.; Benter, T.; Mocanu, R. *In Simulation and Assessment of Chemical Processes in a Multiphase Environment,* Barnes, I., Kharytonov, M. M., Eds.; Springer Science: Dortdrecht, 2008, pp 501-513.

Looking into the differences of MTF

Albu, M.; Barnes, I.; Becker, K. H.; Patroescu-Klotz, I.; Benter, T.; Mocanu, R. *In Simulation and Assessment of Chemical Processes in a Multiphase Environment,* Barnes, I., Kharytonov, M. M., Eds.; Springer Science: Dortdrecht, 2008, pp 501-513.